
10 Syotaro KOIDE, Yuzo SAKAI, and Seiji KATAOKA

Fig. 4 Improving processes from 0 to 3600

sec for an instance

Fig. 5 Improving processes from 0 to 10

sec for an instance

the final result from Formulation K and Gurobi,

but it takes 1800 or 3300 sec for Gurobi to catch

up with these two inferior results.

Finally, Figure 6 shows the average behavior

of 10 trials of 96;(8)12 instances. The horizon-

tal line shows the average value obtained after a

3600-sec runtime of Gurobi and is set to 1.00 as

a standard. According to the standard, the re-

sults of the matheuristic algorithm are shown as

relative values. The upper line is the average of

the 10 worst cases among the 10 different ran-

dom seeds, and the lower line is that of the 10

best cases. The middle line is the average of all

10 instances and all 10 random seeds. The pro-

posed matheuristic algorithm performs so quickly

that the multi-start strategy will be expected to

resolve large MMGLD instances, such as for 96

cadets and 12 squads, or actual Dan-Kou races.

Fig. 6 Average behavior of 10 trials

6. Concluding remarks

This study was inspired by the competitive

sport Dan-Kou. Based on two cadets’ studies,

we proposed a new lower bounding strategy.

By applying the proposed lower bounds, the

developed branch-and-bound algorithm succeeds

in solving small mathematical models thousands

of times faster than using Gurobi. In order to

solve larger or real-life Dan-Kou size instances,

we apply the matheuristic idea. The proposed

matheuristic outperforms previous best values

by a few seconds.

References

1) C. Archetti and M.G. Speranza, “A Sur-

vey on matheuristics for routing problems,”

EURO Journal on Computational Optimiza-

tion 2 (2014), pp.223–246.

2) M.O. Ball, “Heuristics based on mathe-

matical programming,” Surveys in Opera-

tions Research and Management Science 16

(2011), pp.21–38.

3) Gurobi Optimizer:

http://www.gurobi.com (2022-8-22).

4) Y. Hamamoto, Optimal Squad Group-

ing for Dan-Kou, Bachelor’s thesis (50th

term), Dept. Computer Science (2006) (in

Japanese).

5) H. Kellerer, U. Pferschy, and D. Pisinger,

Knapsack problems, Springer, Berlin (2004).

6) H. Kozuka, Min-Max Grouping and Load-

Distributing Problem, Bachelor’s thesis (65

term), Dept. Computer Science (2021) (in

Japanese).

7) M. Mutingi and C. Mbohwa, Grouping Ge-

netic Algorithms — Advances and Applica-

tions, Springer, Cham (2017).

8) NTT DATA Mathematical Systems Inc:

http://www.msi.co.jp/nuopt(2022-8-22).

Memoirs
of the National Defense Academy,

Japan, Vol. 62, No. 2,
(2022), pp. 11– 20

― 11―

2 Masaki FUKUSHIMA and Seiji KATAOKA

The remainder of this paper is organized as fol-

lows: Section 2 introduces graph-theoretic code

and ML decoding formulation. Computational

experiments show the superiority of using simple

formulation and solver, and show the high de-

coding performance on grid graphs under com-

munication with high noise. In Section 3, we

show a method for embedding block code like long

vectors into the two-dimensional plane of a grid

graph. This method also leads to an easy way

of making a codeword directly from information

bits, namely, a way to form a cycle group in a grid

graph. The proposed coding method is applica-

ble to any type of information bits, but applying

it to binary images will help us understand its

effectiveness. The visualized results both demon-

strate the superiority of our proposed method and

reveal some defects. In Section 4, we develop

an improvement strategy to eliminate these de-

fects. Computational experiments demonstrate

best-seen error-correcting results under commu-

nication with high noise. Our concluding remarks

are in Section 5.

2. Graph-theoretic code and decoding by

mathematical programming

2.1 Graph-theoretic code

Consider an undirected graph (Figure 1) and a

spanning tree in the graph (bold lines). The set of

edges not in the spanning tree is called the co-tree.

In Figure 1, for example, the co-tree is {e1, e2, e3}.

✂

✂

✂✂ ✂

❡✶❡✷

❡✸ ❡✹

❡✺

❡✻

❡✼

✈✶

✈✷

✈✸

✈✹✈✺

Fig. 1 Undirected graph with 5 nodes and

7 edges. The bold lines show a tree.

Adding a co-tree edge to the spanning tree cre-

ates a unique cycle. The relation between each

co-tree edge and its corresponding cycle defines a

0–1 matrix, where rows are the co-tree edges and

columns are all edges in the graph. This matrix

is called the fundamental circuit matrix. Graph-

theoretic code uses the fundamental circuit ma-

trix as a generating matrix. Note that the in-

formation bits correspond to co-tree edges, so let

k be the length of information bits and n be the

length of codeword. It is known that any group of

cycles is generated as the exclusive OR (XOR) of

appropriate rows of the fundamental circuit ma-

trix.11) For example, the cycle (e1, e5, e6, e3, e4)

is generated by the XOR of cycle (e1, e5, e7, e4)

by e1 and cycle (e3, e7, e6) by e3. Therefore, each

codeword also corresponds to a cycle group in the

graph.

Deleting an edge from the spanning tree divides

the set of vertices into two groups. The set of

edges between the two separated groups is called

a cut. The relation between each edge in the span-

ning tree and its corresponding cut defines a 0–

1 matrix, where rows are edges in the spanning

tree and columns are all edges in the graph. This

matrix is called the fundamental cut matrix. It

is known that the fundamental cut matrix is the

dual matrix of the fundamental circuit matrix, so

we can use the fundamental cut matrix as a parity

check matrix for graph-theoretic code.

It is also known that any cut can be gener-

ated as the XOR of appropriate rows of the

fundamental cut matrix.11) For example, the

cut {e4, e7, e3} is generated by the XOR of cut

{e1, e4} by e4 and cut {e1, e7, e3} by e7. Then,

every cut between a vertex and the other vertices,

that is, the vertex–edge incidence matrix, is also

constructed from the fundamental cut matrix.

Therefore, in this paper, we use the vertex–edge

incidence matrix H as the parity check matrix.

Graph-theoretic Code on Grid Graph under Communication with High Noise 3

2.2 Maximal likelihood decoding by

mathematical programming

This study assumes binary phase-shift keying

(BPSK) and additive white Gaussian noise

(AWGN) as the communication channel, which

are normally used in studies of satellite or wire-

less communications. That is, for a codeword

w, the corresponding sent word is formed by

transforming 0 into 1, and 1 into −1. While

conveying the sent word through the channel,

a value following a Gaussian distribution with

mean 0.0 and variance σ2 is independently added

as noise to each bit. Here, σ2 = 10−A/10/(2R),

where A [dB] is the signal-to-noise ratio (SNR)

and code rate R = (the information length)

/ (the codeword length) = k/n. The result

becomes the received word r.

At this time, the conditional probability of re-

ceiving rj when sending wj is

Pr|w(rj |wj) :=
1√
2πσ2

exp

(
−(rj − (1− 2wj))

2

2σ2

)
.

(1)

Additionally, consider the logarithm likelihood

ratio

λj := log

(
Pr|w(rj |0)
Pr|w(rj |1)

)
. (2)

Maximizing the probability
∏

j Pr|w(rj |wj) is

equivalent to minimizing the following linear

objective function2) subject to constraints for

the codewords on Galois field 2 (GF(2)):

min λ⊤x,

s.t. Hx ≡ 0 (mod 2),

x ∈ {0, 1}n.
(3)

The optimal 0–1 solution x∗ to (3) leads the ML
decoding.

In order to solve the formulation (3) on GF(2),

we simply reformulate the formulation on real

field such as (4), where Hx is a vector of degrees

on each vertex, and −2y is introduced to force

every degree to be even:

min λ⊤x,

s.t. Hx− 2y = 0,

x ∈ {0, 1}n,y : nonnegative integer.

(4)

Then, a mathematical programming solver such
as Gurobi can be applicable to obtain x∗. We

call this decoding strategymathematical program-

ming decoding.

As introduced in Section 1, for graph-theoretic

code, Kashyap6) proposed a polynomial time

ML decoding algorithm. The algorithm reduces

the method to the Euler subgraph problem and

obtains the optimal set of edges called T-join.

Furthermore, obtaining optimal T-join consists

of a number of shortest path problems and

the minimum-weight perfect matching problem

for a general complete graph.7) Indeed, it is

polynomial but the order is high. We wrote

a code of the algorithm but observed that, in

practice, the performance is inferior to that of

the mathematical programming decoding.

2.3 Performance of graph-theoretic code

Table 1 shows computational results of graph-

theoretic code on random graphs and grid graphs

to evaluate bit-error rate (BitE)[%] and cpu

runtime (CPU)[sec]. For comparison, we also

show results for an LDPC(n, k) code referred

from MacKay,9) where n is code length and k is

information bits. As the decoding algorithm, we

use Feldman’s formulation2) with 0–1 conditions

for ML decoding (5), where hi is the set of

nonzero-column subscripts in the ith row of the

parity check matrix H.

min λ⊤x,

s.t.
∑

j∈S xj −
∑

j∈hi\S xj ≤ |S| − 1,

∀i, S ⊆ hi, |S| is an odd integer,

x ∈ {0, 1}n.
(5)

― 12―

2 Masaki FUKUSHIMA and Seiji KATAOKA

The remainder of this paper is organized as fol-

lows: Section 2 introduces graph-theoretic code

and ML decoding formulation. Computational

experiments show the superiority of using simple

formulation and solver, and show the high de-

coding performance on grid graphs under com-

munication with high noise. In Section 3, we

show a method for embedding block code like long

vectors into the two-dimensional plane of a grid

graph. This method also leads to an easy way

of making a codeword directly from information

bits, namely, a way to form a cycle group in a grid

graph. The proposed coding method is applica-

ble to any type of information bits, but applying

it to binary images will help us understand its

effectiveness. The visualized results both demon-

strate the superiority of our proposed method and

reveal some defects. In Section 4, we develop

an improvement strategy to eliminate these de-

fects. Computational experiments demonstrate

best-seen error-correcting results under commu-

nication with high noise. Our concluding remarks

are in Section 5.

2. Graph-theoretic code and decoding by

mathematical programming

2.1 Graph-theoretic code

Consider an undirected graph (Figure 1) and a

spanning tree in the graph (bold lines). The set of

edges not in the spanning tree is called the co-tree.

In Figure 1, for example, the co-tree is {e1, e2, e3}.

✂

✂

✂✂ ✂

❡✶❡✷

❡✸ ❡✹

❡✺

❡✻

❡✼

✈✶

✈✷

✈✸

✈✹✈✺

Fig. 1 Undirected graph with 5 nodes and

7 edges. The bold lines show a tree.

Adding a co-tree edge to the spanning tree cre-

ates a unique cycle. The relation between each

co-tree edge and its corresponding cycle defines a

0–1 matrix, where rows are the co-tree edges and

columns are all edges in the graph. This matrix

is called the fundamental circuit matrix. Graph-

theoretic code uses the fundamental circuit ma-

trix as a generating matrix. Note that the in-

formation bits correspond to co-tree edges, so let

k be the length of information bits and n be the

length of codeword. It is known that any group of

cycles is generated as the exclusive OR (XOR) of

appropriate rows of the fundamental circuit ma-

trix.11) For example, the cycle (e1, e5, e6, e3, e4)

is generated by the XOR of cycle (e1, e5, e7, e4)

by e1 and cycle (e3, e7, e6) by e3. Therefore, each

codeword also corresponds to a cycle group in the

graph.

Deleting an edge from the spanning tree divides

the set of vertices into two groups. The set of

edges between the two separated groups is called

a cut. The relation between each edge in the span-

ning tree and its corresponding cut defines a 0–

1 matrix, where rows are edges in the spanning

tree and columns are all edges in the graph. This

matrix is called the fundamental cut matrix. It

is known that the fundamental cut matrix is the

dual matrix of the fundamental circuit matrix, so

we can use the fundamental cut matrix as a parity

check matrix for graph-theoretic code.

It is also known that any cut can be gener-

ated as the XOR of appropriate rows of the

fundamental cut matrix.11) For example, the

cut {e4, e7, e3} is generated by the XOR of cut

{e1, e4} by e4 and cut {e1, e7, e3} by e7. Then,

every cut between a vertex and the other vertices,

that is, the vertex–edge incidence matrix, is also

constructed from the fundamental cut matrix.

Therefore, in this paper, we use the vertex–edge

incidence matrix H as the parity check matrix.

Graph-theoretic Code on Grid Graph under Communication with High Noise 3

2.2 Maximal likelihood decoding by

mathematical programming

This study assumes binary phase-shift keying

(BPSK) and additive white Gaussian noise

(AWGN) as the communication channel, which

are normally used in studies of satellite or wire-

less communications. That is, for a codeword

w, the corresponding sent word is formed by

transforming 0 into 1, and 1 into −1. While

conveying the sent word through the channel,

a value following a Gaussian distribution with

mean 0.0 and variance σ2 is independently added

as noise to each bit. Here, σ2 = 10−A/10/(2R),

where A [dB] is the signal-to-noise ratio (SNR)

and code rate R = (the information length)

/ (the codeword length) = k/n. The result

becomes the received word r.

At this time, the conditional probability of re-

ceiving rj when sending wj is

Pr|w(rj |wj) :=
1√
2πσ2

exp

(
−(rj − (1− 2wj))

2

2σ2

)
.

(1)

Additionally, consider the logarithm likelihood

ratio

λj := log

(
Pr|w(rj |0)
Pr|w(rj |1)

)
. (2)

Maximizing the probability
∏

j Pr|w(rj |wj) is

equivalent to minimizing the following linear

objective function2) subject to constraints for

the codewords on Galois field 2 (GF(2)):

min λ⊤x,

s.t. Hx ≡ 0 (mod 2),

x ∈ {0, 1}n.
(3)

The optimal 0–1 solution x∗ to (3) leads the ML
decoding.

In order to solve the formulation (3) on GF(2),

we simply reformulate the formulation on real

field such as (4), where Hx is a vector of degrees

on each vertex, and −2y is introduced to force

every degree to be even:

min λ⊤x,

s.t. Hx− 2y = 0,

x ∈ {0, 1}n,y : nonnegative integer.

(4)

Then, a mathematical programming solver such
as Gurobi can be applicable to obtain x∗. We

call this decoding strategymathematical program-

ming decoding.

As introduced in Section 1, for graph-theoretic

code, Kashyap6) proposed a polynomial time

ML decoding algorithm. The algorithm reduces

the method to the Euler subgraph problem and

obtains the optimal set of edges called T-join.

Furthermore, obtaining optimal T-join consists

of a number of shortest path problems and

the minimum-weight perfect matching problem

for a general complete graph.7) Indeed, it is

polynomial but the order is high. We wrote

a code of the algorithm but observed that, in

practice, the performance is inferior to that of

the mathematical programming decoding.

2.3 Performance of graph-theoretic code

Table 1 shows computational results of graph-

theoretic code on random graphs and grid graphs

to evaluate bit-error rate (BitE)[%] and cpu

runtime (CPU)[sec]. For comparison, we also

show results for an LDPC(n, k) code referred

from MacKay,9) where n is code length and k is

information bits. As the decoding algorithm, we

use Feldman’s formulation2) with 0–1 conditions

for ML decoding (5), where hi is the set of

nonzero-column subscripts in the ith row of the

parity check matrix H.

min λ⊤x,

s.t.
∑

j∈S xj −
∑

j∈hi\S xj ≤ |S| − 1,

∀i, S ⊆ hi, |S| is an odd integer,

x ∈ {0, 1}n.
(5)

― 13―

4 Masaki FUKUSHIMA and Seiji KATAOKA

Table 1 The computational results of random graphs and grid graphs.
LDPC(204,102) RndG(200,100) RndG(400,200) GridG(200,101) GridG(450,226) GridG(800,401)

SNR BitE CPU BitE CPU BitE CPU BitE CPU BitE CPU BitE CPU
0.0 11.361 41.469 10.328 0.024 10.212 0.048 9.109 0.028 9.156 0.083 9.083 0.280
0.5 6.360 25.671 8.253 0.023 8.250 0.046 6.595 0.024 6.562 0.074 6.441 0.213
1.0 2.259 11.840 6.220 0.022 6.278 0.044 4.465 0.021 4.304 0.063 4.228 0.144
1.5 0.475 3.581 4.212 0.020 4.384 0.042 2.793 0.017 2.751 0.049 2.682 0.103
2.0 0.052 0.885 2.652 0.017 2.732 0.035 1.665 0.015 1.735 0.039 1.692 0.078
2.5 0.000 0.130 1.569 0.015 1.481 0.030 1.003 0.013 1.048 0.031 0.985 0.062
3.0 0.000 0.054 0.894 0.012 0.623 0.025 0.543 0.012 0.604 0.026 0.608 0.051
3.5 0.000 0.048 0.415 0.011 0.301 0.020 0.286 0.011 0.300 0.021 0.346 0.042
4.0 0.000 0.047 0.196 0.009 0.125 0.017 0.144 0.010 0.166 0.187 0.182 0.036
4.5 0.000 0.048 0.086 0.009 0.044 0.014 0.061 0.009 0.093 0.016 0.083 0.031
5.0 0.000 0.047 0.042 0.008 0.022 0.013 0.022 0.008 0.039 0.015 0.039 0.028

Numerical experiments described in this paper

are performed on a personal computer with a

3.3 GHz Intel Core i7-5820K CPU running the

CentOS 6.8 operating system and Gurobi 9.03)

as the mathematical programming solver. Each

figure shows average values for 1000 trials.

As for random graph, RndG(n, k) has n−k+1

vertices, n − k randomly selected spanning tree

edges, and additional k randomly selected co-tree

edges. And as for grid graph, GridG(n, k) has√
n/2×

√
n/2 grids and k = n/2+1 co-tree edges.

Observing Table 1 under middle- or low-

noise communications, we can see that BitE of

LDPC code is much smaller than that of graph-

theoretic code. But under high-noise conditions,

graph-theoretic code shows superior decoding

performance. Furthermore, mathematical pro-

gramming decoding is ML, and this decoding

strategy can certainly obtain a codeword.

Moreover grid graphs lead to decoding perfor-

mance superior to random graphs, particularly

when SNR is small. When SNR is 0.0 [dB], the

bit-error rate is less than 10%. Computational

performance is fast even when the code length

becomes large, as in GridG(800, 401).

Graph-theoretic code has generally been poorly

evaluated for decoding performance, and we saw

similar phenomena when using random graphs.

But when using a grid graph, the graph-theoretic

code leads to preferable decoding performance,

especially when SNR is small, i.e., under commu-

nications with high noise.

3. Coding strategy and performance

In this section, we propose a coding strategy

that provides a meaningful connection between

information bits and cycle groups in grid graphs.

In the proposed strategy, besides the convention-

ally used bit error, we introduce another error

evaluation criterion called pixel error.

3.1 Coding strategy on grid graph

As an example, consider a grid graph having

3 × 4 squares, like that on the left side in Fig-

ure 2. This graph has (3 + 1)(4 + 1) = 20 ver-

tices and 3(4 + 1) + 4(3 + 1) = 31 edges. The

bold edges show a spanning tree and the remain-

ing 31 − (20 − 1) = 12 edges (co-tree edges) are

numbered e1, e2, . . . , e12. Since co-tree edges cor-

respond to information bits, an information bit

sequence such as (0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0) in-

duces six cycles, and their XOR produces the cy-

cle shown on the right side in Figure 2.

Since the length of information bits is equal to

❡✶ ❡✷ ❡✸ ❡✹

❡✺ ❡✻ ❡✼ ❡✽

❡✾ ❡✶� ❡✶✶ ❡✶✷

❡✶✸ ❡✶✹ ❡✶✺ ❡✶✻

❡✶✼

❡✶✽ ❡✶✾ ❡✷� ❡✷✶

❡✷✷

❡✷✸ ❡✷✹ ❡✷✺ ❡✷✻

❡✷✼

❡✷✽ ❡✷✾ ❡✸� ❡✸✶

✵ ✵✁ ✁

✁ ✁ ✁ ✵

✁ ✵✵✵

Fig. 2 Conventional coding method.

Graph-theoretic Code on Grid Graph under Communication with High Noise 5

the number of squares in the grid graph, we con-

sider assigning information bits to squares in the

grid graph such as the black dots in Figure 3. The

corresponding codeword is then set to the group

of cycles enclosing the dots in the squares. See

the bold edges in Figure 3.

This codeword coincides with the result for in-

formation bits such as (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0)

in the conventional coding method, but the pro-

posed coding method visually reflects the infor-

mation bits as a binary image. This characteris-

tic plays an important role in precise error cor-

recting. Section 4 shows a strategy for improving

error correction based on this characteristic.

Additionally, the proposed coding method in-

duces an easy algorithm for constructing code-

words, namely, tracing the outlines of ON pixels

(black dots) in squares in the grid graph. This

algorithm sets an edge to 1 when two pixels on

both sides of the edge are ON–OFF or OFF–ON,

or to 0 when the two pixels are ON–ON or OFF–

OFF. Note that the outside area is regarded to

be OFF. This algorithm does not need to take a

spanning tree, make cycles for each co-tree edge,

or calculate the XOR for those cycles. Instead, it

can be performed directly from the pixel states.

The reverse procedure, getting information bits

from cycle groups, is also easy; we simply alter-

natively switch ON and OFF each time we step

over the edges of cycles.

3.2 Pixel error

Bit error is a standard criterion for evaluating

the performance of error-correcting code. For ex-

Fig. 3 Proposed coding method.

ample, if Figure 4 is the decoded result for an

original codeword like that in Figure 3, then bit

errors occur at the eight edges marked ×, and

the bit-error rate is 8/31 ≈ 0.258. In the con-

ventional coding method, information bits corre-

spond to co-tree edges e1, . . . , e12, so the three in-

formation bits marked as ⊗ edges are incorrectly

conveyed, and the bit-error rate for that informa-

tion part is 3/12 = 0.250. In the proposed coding

method, however, information bits correspond to

squares in the grid graph, which we called pixels

in the previous subsection. Hence, the two pixels

marked ⊙ are errors in the information part, so

the error rate is 2/12 ≈ 0.167. Below, we call this

new evaluation criterion pixel error.

This example shows that two error rates con-

cerning information bits can be obtained from the

same decoded result. The aim of error-correcting

code is to convey information bits as correctly as

possible. Hence, it should be meaningful to pay

attention to error in information bits.

3.3 Decoding performance of the two

coding methods

In section 3.1, we have introduced two coding

methods for assigning information bits for graph-

theoretic code on a grid graph. One is a con-

ventional method that assigns information bits

to co-tree edges, and the other is the proposed

method, which assigns them to squares in a grid

graph. This subsection examines the differences

through computational experiments.

Before showing those results, we present two

observed results from several preliminary exper-

☞

☞

✂

✂

✂✂

✂

✂

✂

✂

✡

✡ ✡

Fig. 4 Pixel error.

― 14―

4 Masaki FUKUSHIMA and Seiji KATAOKA

Table 1 The computational results of random graphs and grid graphs.
LDPC(204,102) RndG(200,100) RndG(400,200) GridG(200,101) GridG(450,226) GridG(800,401)

SNR BitE CPU BitE CPU BitE CPU BitE CPU BitE CPU BitE CPU
0.0 11.361 41.469 10.328 0.024 10.212 0.048 9.109 0.028 9.156 0.083 9.083 0.280
0.5 6.360 25.671 8.253 0.023 8.250 0.046 6.595 0.024 6.562 0.074 6.441 0.213
1.0 2.259 11.840 6.220 0.022 6.278 0.044 4.465 0.021 4.304 0.063 4.228 0.144
1.5 0.475 3.581 4.212 0.020 4.384 0.042 2.793 0.017 2.751 0.049 2.682 0.103
2.0 0.052 0.885 2.652 0.017 2.732 0.035 1.665 0.015 1.735 0.039 1.692 0.078
2.5 0.000 0.130 1.569 0.015 1.481 0.030 1.003 0.013 1.048 0.031 0.985 0.062
3.0 0.000 0.054 0.894 0.012 0.623 0.025 0.543 0.012 0.604 0.026 0.608 0.051
3.5 0.000 0.048 0.415 0.011 0.301 0.020 0.286 0.011 0.300 0.021 0.346 0.042
4.0 0.000 0.047 0.196 0.009 0.125 0.017 0.144 0.010 0.166 0.187 0.182 0.036
4.5 0.000 0.048 0.086 0.009 0.044 0.014 0.061 0.009 0.093 0.016 0.083 0.031
5.0 0.000 0.047 0.042 0.008 0.022 0.013 0.022 0.008 0.039 0.015 0.039 0.028

Numerical experiments described in this paper

are performed on a personal computer with a

3.3 GHz Intel Core i7-5820K CPU running the

CentOS 6.8 operating system and Gurobi 9.03)

as the mathematical programming solver. Each

figure shows average values for 1000 trials.

As for random graph, RndG(n, k) has n−k+1

vertices, n − k randomly selected spanning tree

edges, and additional k randomly selected co-tree

edges. And as for grid graph, GridG(n, k) has√
n/2×

√
n/2 grids and k = n/2+1 co-tree edges.

Observing Table 1 under middle- or low-

noise communications, we can see that BitE of

LDPC code is much smaller than that of graph-

theoretic code. But under high-noise conditions,

graph-theoretic code shows superior decoding

performance. Furthermore, mathematical pro-

gramming decoding is ML, and this decoding

strategy can certainly obtain a codeword.

Moreover grid graphs lead to decoding perfor-

mance superior to random graphs, particularly

when SNR is small. When SNR is 0.0 [dB], the

bit-error rate is less than 10%. Computational

performance is fast even when the code length

becomes large, as in GridG(800, 401).

Graph-theoretic code has generally been poorly

evaluated for decoding performance, and we saw

similar phenomena when using random graphs.

But when using a grid graph, the graph-theoretic

code leads to preferable decoding performance,

especially when SNR is small, i.e., under commu-

nications with high noise.

3. Coding strategy and performance

In this section, we propose a coding strategy

that provides a meaningful connection between

information bits and cycle groups in grid graphs.

In the proposed strategy, besides the convention-

ally used bit error, we introduce another error

evaluation criterion called pixel error.

3.1 Coding strategy on grid graph

As an example, consider a grid graph having

3 × 4 squares, like that on the left side in Fig-

ure 2. This graph has (3 + 1)(4 + 1) = 20 ver-

tices and 3(4 + 1) + 4(3 + 1) = 31 edges. The

bold edges show a spanning tree and the remain-

ing 31 − (20 − 1) = 12 edges (co-tree edges) are

numbered e1, e2, . . . , e12. Since co-tree edges cor-

respond to information bits, an information bit

sequence such as (0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0) in-

duces six cycles, and their XOR produces the cy-

cle shown on the right side in Figure 2.

Since the length of information bits is equal to

❡✶ ❡✷ ❡✸ ❡✹

❡✺ ❡✻ ❡✼ ❡✽

❡✾ ❡✶� ❡✶✶ ❡✶✷

❡✶✸ ❡✶✹ ❡✶✺ ❡✶✻

❡✶✼

❡✶✽ ❡✶✾ ❡✷� ❡✷✶

❡✷✷

❡✷✸ ❡✷✹ ❡✷✺ ❡✷✻

❡✷✼

❡✷✽ ❡✷✾ ❡✸� ❡✸✶

✵ ✵✁ ✁

✁ ✁ ✁ ✵

✁ ✵✵✵

Fig. 2 Conventional coding method.

Graph-theoretic Code on Grid Graph under Communication with High Noise 5

the number of squares in the grid graph, we con-

sider assigning information bits to squares in the

grid graph such as the black dots in Figure 3. The

corresponding codeword is then set to the group

of cycles enclosing the dots in the squares. See

the bold edges in Figure 3.

This codeword coincides with the result for in-

formation bits such as (1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0)

in the conventional coding method, but the pro-

posed coding method visually reflects the infor-

mation bits as a binary image. This characteris-

tic plays an important role in precise error cor-

recting. Section 4 shows a strategy for improving

error correction based on this characteristic.

Additionally, the proposed coding method in-

duces an easy algorithm for constructing code-

words, namely, tracing the outlines of ON pixels

(black dots) in squares in the grid graph. This

algorithm sets an edge to 1 when two pixels on

both sides of the edge are ON–OFF or OFF–ON,

or to 0 when the two pixels are ON–ON or OFF–

OFF. Note that the outside area is regarded to

be OFF. This algorithm does not need to take a

spanning tree, make cycles for each co-tree edge,

or calculate the XOR for those cycles. Instead, it

can be performed directly from the pixel states.

The reverse procedure, getting information bits

from cycle groups, is also easy; we simply alter-

natively switch ON and OFF each time we step

over the edges of cycles.

3.2 Pixel error

Bit error is a standard criterion for evaluating

the performance of error-correcting code. For ex-

Fig. 3 Proposed coding method.

ample, if Figure 4 is the decoded result for an

original codeword like that in Figure 3, then bit

errors occur at the eight edges marked ×, and

the bit-error rate is 8/31 ≈ 0.258. In the con-

ventional coding method, information bits corre-

spond to co-tree edges e1, . . . , e12, so the three in-

formation bits marked as ⊗ edges are incorrectly

conveyed, and the bit-error rate for that informa-

tion part is 3/12 = 0.250. In the proposed coding

method, however, information bits correspond to

squares in the grid graph, which we called pixels

in the previous subsection. Hence, the two pixels

marked ⊙ are errors in the information part, so

the error rate is 2/12 ≈ 0.167. Below, we call this

new evaluation criterion pixel error.

This example shows that two error rates con-

cerning information bits can be obtained from the

same decoded result. The aim of error-correcting

code is to convey information bits as correctly as

possible. Hence, it should be meaningful to pay

attention to error in information bits.

3.3 Decoding performance of the two

coding methods

In section 3.1, we have introduced two coding

methods for assigning information bits for graph-

theoretic code on a grid graph. One is a con-

ventional method that assigns information bits

to co-tree edges, and the other is the proposed

method, which assigns them to squares in a grid

graph. This subsection examines the differences

through computational experiments.

Before showing those results, we present two

observed results from several preliminary exper-

☞

☞

✂

✂

✂✂

✂

✂

✂

✂

✡

✡ ✡

Fig. 4 Pixel error.

― 15―

6 Masaki FUKUSHIMA and Seiji KATAOKA

iments. The first result is related to spanning

trees. Testing various spanning trees, we de-

termined that no conspicuous influences among

these trees were observed. The second result is

related to types of binary images. We tested

several binary images, including a designed

logotype like that in Figure 5 (the OR logo at the

top center), Japanese kanji characters, several

block-pixel squares arrayed like a chessboard,

and QR codes as random information bits. In

these preliminary experiments, we observed no

significant differences among these binary im-

ages. Hence, in the following experiments, results

are for the logotype image in Figure 5, which

consists of 27 × 25 = 675 pixels (information

bits) and 1402 edges (code length).

In Table 2, ‘Conventional’ shows the results

of the conventional coding method, which does

not reflect the shape of the binary image. ‘Pro-

posed’ shows the results of the proposed coding

method, which outlines the shape of the binary

image. ‘BitE’ is the average bit-error rate for

the codeword. ‘InfE’ (Conventional) and ‘PxlE’

(Proposed) are average error rates for informa-

tion bits. Each figure in the table is an averaged

value from 1000 trials. Figures in parentheses are

standard deviations ‘(sd)’ for the error rate.

Table 2 shows that both BitE and InfE take

similar values in the conventional coding method.

Table 2 Comparison of the conventional

and proposed coding methods.

Conventional Proposed
SNR BitE (sd) InfE (sd) CPU BitE (sd) PxlE (sd) CPU
0.0 8.692(2.2) 8.742(2.3) 1.078 8.711(2.2) 10.248(6.3) 1.030
0.5 6.256(1.8) 6.302(2.0) 0.557 6.260(1.8) 6.042(3.8) 0.532
1.0 4.325(1.5) 4.347(1.6) 0.299 4.383(1.5) 3.649(2.3) 0.277
1.5 2.896(1.1) 2.914(1.2) 0.166 2.896(1.1) 2.116(1.3) 0.166
2.0 1.880(0.9) 1.891(0.9) 0.108 1.869(0.9) 1.248(0.8) 0.111
2.5 1.188(0.7) 1.194(0.7) 0.076 1.169(0.7) 0.735(0.5) 0.078
3.0 0.694(0.5) 0.697(0.5) 0.057 0.697(0.5) 0.419(0.3) 0.059
3.5 0.404(0.4) 0.409(0.4) 0.046 0.386(0.4) 0.223(0.2) 0.049
4.0 0.219(0.3) 0.223(0.3) 0.039 0.211(0.3) 0.119(0.2) 0.041
4.5 0.109(0.2) 0.111(0.2) 0.036 0.105(0.2) 0.056(0.1) 0.033
5.0 0.052(0.1) 0.053(0.1) 0.035 0.046(0.1) 0.024(0.1) 0.028

This is because the conventional coding method

does not consider the shape of the original binary

image. A similar occurrence is also observed for

BitE under the proposed coding method.

In contrast, PxlE for the proposed coding

method takes approximately half the InfE values

seen for the conventional coding method under

middle- or low-noise communications. This im-

plies that the proposed coding method certainly

makes use of the shapes of binary images. How-

ever, as Table 2 shows, the average pixel-error

rate is around 10% at 0.0 [dB]. This result may

not seem good at a glance, but the standard

deviation value too becomes large. This implies

that even if the decoding results have the same

bit errors, they could have very different pixel

errors. Section 3.4 shows examples from a binary

image and a raw photo image. These visual

results will lead to an algorithm that improves

decoding accuracy.

3.4 Decoding results for binary and raw

photo images

First, we present two decoded results from 1000

trials at SNR 0.0 [dB] in Table 2. The chosen

results have the same bit errors but different

pixel errors. In Figure 5, the top panel (a) is the

original codeword, the leftmost panels ((b) and

(e)) are the results of hard decisions, where we

take edge e if re is negative, and do not take e

otherwise. The center panels ((c) and (f)) show

the results of a sum–product method8) applied to

graph-theoretic code. The sum–product method

is an approximate algorithm that reduces errors

as Humming distance, so the results usually will

not construct feasible solutions (cycle groups).

The rightmost panels ((d) and (g)) are the re-

sults of decoding by mathematical programming,

so these results form cycle groups. Note that

both chosen results have same numbers of bit er-

rors 116, but different numbers of pixel errors, 67

Graph-theoretic Code on Grid Graph under Communication with High Noise 7

Fig. 5 Binary images, where (d) and (g)

have the same 116 bit-errors.

and 39, respectively. This wide deviation in pixel

errors is also observed in Table 2 when SNR is

small. In such cases, some erroneously connected

cycles or somewhat larger cycles in impossible ar-

eas are observed, such as the larger cycle in the

bottom-left corner in Figure 5(d), which includes

20 pixels.

We next used a raw photo image from the Stan-

dard Image Database.10) This raw photo image

consists of 256 × 256 pixels with 256 gradations.

That is, eight 2g-gradation (g = 0, 1, . . . , 7) bi-

nary images, each having 256 × 256 pixels, are

stacked.

Figure 6 shows the decoded results of the photo

image for 0.0 [dB] AWGN. The upper-left image

is the original photo, and those at the upper right

and lower left are images resulting from the hard-

decision and sum–product methods, respectively.

Since codewords of graph-theoretic code consist

of graph edges, and noise is added to edges, de-

coded results do not form cycle groups. See also

Figure 5(b), (c), (e), and (f). Then it is im-

Fig. 6 Raw photo images. Upper left:

original; upper right: hard; lower

left: sum-product; lower right: pro-

posed method.

possible to set each grid-graph pixel to ON or

OFF. Hence, the hard-decision and sum–product

results are from the conventional method.

The lower-right image in Figure 6 is the

result of graph-theoretic code and decoding by

mathematical programming. Noise is reduced

to the extent that marks and characters on the

airplane become readable. However, somewhat

larger fragmental noise is also observed, similar

to that in Figure 5(d). The following section

presents a strategy for eliminating these large

erroneous cycles or fragmental noises by making

use of the grid-graph structure and information

around each edge.

4. Improving strategy

4.1 Ethane graph

For a given grid graph, consider a subgraph

consisting of an edge e, vertices u, v on either side

― 16―

6 Masaki FUKUSHIMA and Seiji KATAOKA

iments. The first result is related to spanning

trees. Testing various spanning trees, we de-

termined that no conspicuous influences among

these trees were observed. The second result is

related to types of binary images. We tested

several binary images, including a designed

logotype like that in Figure 5 (the OR logo at the

top center), Japanese kanji characters, several

block-pixel squares arrayed like a chessboard,

and QR codes as random information bits. In

these preliminary experiments, we observed no

significant differences among these binary im-

ages. Hence, in the following experiments, results

are for the logotype image in Figure 5, which

consists of 27 × 25 = 675 pixels (information

bits) and 1402 edges (code length).

In Table 2, ‘Conventional’ shows the results

of the conventional coding method, which does

not reflect the shape of the binary image. ‘Pro-

posed’ shows the results of the proposed coding

method, which outlines the shape of the binary

image. ‘BitE’ is the average bit-error rate for

the codeword. ‘InfE’ (Conventional) and ‘PxlE’

(Proposed) are average error rates for informa-

tion bits. Each figure in the table is an averaged

value from 1000 trials. Figures in parentheses are

standard deviations ‘(sd)’ for the error rate.

Table 2 shows that both BitE and InfE take

similar values in the conventional coding method.

Table 2 Comparison of the conventional

and proposed coding methods.

Conventional Proposed
SNR BitE (sd) InfE (sd) CPU BitE (sd) PxlE (sd) CPU
0.0 8.692(2.2) 8.742(2.3) 1.078 8.711(2.2) 10.248(6.3) 1.030
0.5 6.256(1.8) 6.302(2.0) 0.557 6.260(1.8) 6.042(3.8) 0.532
1.0 4.325(1.5) 4.347(1.6) 0.299 4.383(1.5) 3.649(2.3) 0.277
1.5 2.896(1.1) 2.914(1.2) 0.166 2.896(1.1) 2.116(1.3) 0.166
2.0 1.880(0.9) 1.891(0.9) 0.108 1.869(0.9) 1.248(0.8) 0.111
2.5 1.188(0.7) 1.194(0.7) 0.076 1.169(0.7) 0.735(0.5) 0.078
3.0 0.694(0.5) 0.697(0.5) 0.057 0.697(0.5) 0.419(0.3) 0.059
3.5 0.404(0.4) 0.409(0.4) 0.046 0.386(0.4) 0.223(0.2) 0.049
4.0 0.219(0.3) 0.223(0.3) 0.039 0.211(0.3) 0.119(0.2) 0.041
4.5 0.109(0.2) 0.111(0.2) 0.036 0.105(0.2) 0.056(0.1) 0.033
5.0 0.052(0.1) 0.053(0.1) 0.035 0.046(0.1) 0.024(0.1) 0.028

This is because the conventional coding method

does not consider the shape of the original binary

image. A similar occurrence is also observed for

BitE under the proposed coding method.

In contrast, PxlE for the proposed coding

method takes approximately half the InfE values

seen for the conventional coding method under

middle- or low-noise communications. This im-

plies that the proposed coding method certainly

makes use of the shapes of binary images. How-

ever, as Table 2 shows, the average pixel-error

rate is around 10% at 0.0 [dB]. This result may

not seem good at a glance, but the standard

deviation value too becomes large. This implies

that even if the decoding results have the same

bit errors, they could have very different pixel

errors. Section 3.4 shows examples from a binary

image and a raw photo image. These visual

results will lead to an algorithm that improves

decoding accuracy.

3.4 Decoding results for binary and raw

photo images

First, we present two decoded results from 1000

trials at SNR 0.0 [dB] in Table 2. The chosen

results have the same bit errors but different

pixel errors. In Figure 5, the top panel (a) is the

original codeword, the leftmost panels ((b) and

(e)) are the results of hard decisions, where we

take edge e if re is negative, and do not take e

otherwise. The center panels ((c) and (f)) show

the results of a sum–product method8) applied to

graph-theoretic code. The sum–product method

is an approximate algorithm that reduces errors

as Humming distance, so the results usually will

not construct feasible solutions (cycle groups).

The rightmost panels ((d) and (g)) are the re-

sults of decoding by mathematical programming,

so these results form cycle groups. Note that

both chosen results have same numbers of bit er-

rors 116, but different numbers of pixel errors, 67

Graph-theoretic Code on Grid Graph under Communication with High Noise 7

Fig. 5 Binary images, where (d) and (g)

have the same 116 bit-errors.

and 39, respectively. This wide deviation in pixel

errors is also observed in Table 2 when SNR is

small. In such cases, some erroneously connected

cycles or somewhat larger cycles in impossible ar-

eas are observed, such as the larger cycle in the

bottom-left corner in Figure 5(d), which includes

20 pixels.

We next used a raw photo image from the Stan-

dard Image Database.10) This raw photo image

consists of 256 × 256 pixels with 256 gradations.

That is, eight 2g-gradation (g = 0, 1, . . . , 7) bi-

nary images, each having 256 × 256 pixels, are

stacked.

Figure 6 shows the decoded results of the photo

image for 0.0 [dB] AWGN. The upper-left image

is the original photo, and those at the upper right

and lower left are images resulting from the hard-

decision and sum–product methods, respectively.

Since codewords of graph-theoretic code consist

of graph edges, and noise is added to edges, de-

coded results do not form cycle groups. See also

Figure 5(b), (c), (e), and (f). Then it is im-

Fig. 6 Raw photo images. Upper left:

original; upper right: hard; lower

left: sum-product; lower right: pro-

posed method.

possible to set each grid-graph pixel to ON or

OFF. Hence, the hard-decision and sum–product

results are from the conventional method.

The lower-right image in Figure 6 is the

result of graph-theoretic code and decoding by

mathematical programming. Noise is reduced

to the extent that marks and characters on the

airplane become readable. However, somewhat

larger fragmental noise is also observed, similar

to that in Figure 5(d). The following section

presents a strategy for eliminating these large

erroneous cycles or fragmental noises by making

use of the grid-graph structure and information

around each edge.

4. Improving strategy

4.1 Ethane graph

For a given grid graph, consider a subgraph

consisting of an edge e, vertices u, v on either side

(a) Original image

(b) Hard decision: # bit error 232 (c) Sum-product: # bit error 120 (d) MP decoding: # bit error 116, pixel error 67

(e) Hard decision: # bit error 219 (f) Sum-product: # bit error 141 (g) MP decoding: # bit error 116, pixel error 39

― 17―

8 Masaki FUKUSHIMA and Seiji KATAOKA

✂ ✂
✉ ✈❡

Fig. 7 Ethane graph GE .

of e, and six edges connecting to u and v (Fig-

ure 7). We call this subgraph an ethane graph

GE , because it is similar to the molecular struc-

ture of ethane (C2H6).

In the ethane graph GE , possible edges or de-

grees are strongly restricted in that each code-

word consists of a cycle group. First of all, the

degrees of u and v must be even, so the total num-

ber of edges in GE , denoted |E(GE)|, cannot be 1,
5, or 6. Secondly, for example when |E(GE)| = 2,

the degrees of u and v must be 2–0 or 0–2, and

the center edge e must not be taken. In this case,

the number of edge patterns in GE is limited to

six: those at either side of u and v and the two

non-center edges. Considering BPSK, in which

1 is sent as −1 and 0 is sent as 1, Table 3 sum-

marizes the expected received values of edges in

GE , where R(e) is the expected received value for

center edge e and R(GE) is the total amount of

expected received values for the edges in E(GE).

4.2 Revising direction to reverse added

noise

The ethane graph and possible states in Table 3

are used to appropriately revise received values.

We show the procedure along with an example.

In Figure 8, the number beside each edge is the

received value rj . For an ethane graph of bold

edges, we calculate the total amount of received

value rj (j ∈ E(GE)). In this example, this is

Table 3 Possible states in GE .

|E(GE)| 0 1 2 3 4 5 6 7

deg(u, v) 0-0 — 2-0,0-2 2-2 2-2 — — 4-4

R(e) 1 — 1 −1 1 — — −1

R(GE) 7 — 3 1 −1 — — −7

❡

✵'� ✵'� ✵'�

☎✵✿✾ 6'6

✵'6 ✵'	

Fig. 8 Received values on the ethane

graph of bold edges.

0?✿✶ ✁ ?✿✾ 0 ?✿✼ 0 ✶✿✶

?✵✂ ?✵✄ ?✵☎

?✵✶

✁?✿✾

?✵✼

✶✵✶

✁✶✿✶ ✁✶✿✶

✁✶✿✂ ✁✶✿✂

✁?✿✶ ✁?✿✶

?✵✾

?✵✾ ?✵✾ ?✵✾

?✵☎

?✵☎ ?✵☎ ?✵☎

✶✵✶

✶✵✶ ✶✵✶ ✶✵✶

?✵✆ ?✵✆ ?✵✆

?✵✆ ?✵✆ ?✵✆

✁✶✿✼ ✁✶✿✼

?✵✝ ?✵✝ ?✵✝

?✵✝

✁✄✿✶ ✁✄✿✶✁?✿✶

✁?✿✶ ✁?✿✶ ✁?✿✶

✁✶✿☎ ✁✶✿☎?✵✂

?✵✂ ?✵✂ ?✵✂

✺✞✟ ✸✞✠

✻✞✡ ☛✞✻ ☛✞✠

✠✞✹

❂ ✄✿✄

?✿✂ 0 ?✿✄ 0 ?✿☎

Fig. 9 Possible edge patterns in the

R(GE) = 3 case.

0.4 + 0.2 + 0.6 + 0.1− 0.9 + 0.7 + 1.1 = 2.2. Ac-

cording to Table 3, the nearest total amount of

expected received value R(GE) is 3. From this

information, we estimate an edge pattern in the

ethane graph as described below.

R(GE) = 3 indicates that two edges lie in GE ,

the degrees of vertices are 2–0 or 0–2, and the

center edge is not used. In this case, six edge

patterns are possible (Figure 9). For each possi-

ble edge pattern, we calculate the reversing values

of added noises by AWGN. In the case of an edge

with rj = 0.4, if the edge is taken as part of a

cycle, the reversing value of added noise is −1.4,

or 0.6 if the edge is not taken as part of the cy-

cle. In Figure 9, the number beside each edge

is the reversing value of added noise for the pos-

sible edge patterns. Additionally, the values in

boxes for each edge pattern show sums of abso-

lute values of reversing added noise. In this case,

3.4 is the minimum among the six edge patterns.

Therefore, it is natural to estimate that the edge

Graph-theoretic Code on Grid Graph under Communication with High Noise 9

pattern in the dotted box fits part of the original

codeword through the ethane graph. Let δ1(j)

(j ∈ E(GE)) be the revising direction to reverse

added noise obtained from the bold ethane graph

in Figure 8.

The first procedural step is to calculate the to-

tal amount of received values and to find the near-

est expected received value R(GE) from Table 3.

The second estimating step is executed based on

this information. If the guess in the first step is

wrong, the resultant δ1(j) (j ∈ E(GE)) will also

give the wrong revising direction. However, con-

sidering several ethane graphs will mitigate seri-

ous mistakes. For edge e in Figure 8, the bold-

dotted ethane graph is the second ethane graph,

so δ2(e) is induced as another revising direction.

Observing Figure 8, at most seven ethane graphs

include edge e, and these ethane graphs cover the

solid edges in the figure. Considering information

on the broadly surrounding areas,

∆(e) := δ1(e) + δ2(e) + · · ·+ δ7(e) (6)

can be expected to give a revised direction, and

∆(e) is used to revise the received value re to r′e,

r′e := re + θ∆(e), ∀ e in grid graph. (7)

Through various preliminary experiments, we en-

sured that an appropriate step size θ depends on

the noise strength, that is, SNR. However, the

value of SNR cannot be known in advance, so in-

stead we use the rate of odd-degree vertices in

hard decisions and find an appropriate step size

θ as follows:

θ := 0.21 · (the rate of odd-degree vertices). (8)

4.3 Effect of improving strategy

To see the effects of the improving strategy, we

use the same experimental data as in Section 3.

As the first results, Table 4 shows improvements

over the results shown in Table 2. The left half

of this table is a copy of Table 2, and the right

half shows the results of the improving strategy.

These results clearly demonstrate that the im-

proving strategy is effective. Particularly under

communication with high noise, this strategy re-

duces error to less than half that of both BitE and

PxlE. Furthermore, cpu runtimes are decreased.

As Table 2 shows, decoding by mathematical pro-

gramming performs quickly as added noise is low-

ered. The revised received word is therefore re-

garded as having reduced noise as a welcomed

side-effect.

The second result is Figure 10, which shows the

improvements of Figures 5 and 6. The left half

shows improvement to the binary images in Fig-

ure 5. The left images ((a) and (c)) are copies

of the results of the original mathematical pro-

gramming decoding (Figure 5(d) and (g)), and

the right images ((b) and (d)) are the improved

results. In this case, too, we can see that some-

what larger cycles are eliminated. The right half

shows the result of the raw photo image in Fig-

ure 6, in which we can also see that most large

fragmental noise is eliminated, and characters on

the airplane can be clearly recognized.

5. Concluding remarks

Graph-theoretic code is a classical form of

error-correcting code, but it has generally not

Table 4 Numerical results of the improve-

ment.
Proposed Improved

SNR BitE(sd) PxlE(sd) CPU BitE(sd) PxlE(sd) CPU
0.0 8.711(2.2) 10.248(6.3) 1.030 4.321(1.5) 3.881(3.3) 0.418
0.5 6.260(1.8) 6.042(3.8) 0.532 3.167(1.2) 2.438(1.8) 0.215
1.0 4.383(1.5) 3.649(2.3) 0.277 2.272(1.0) 1.599(1.0) 0.139
1.5 2.896(1.1) 2.116(1.3) 0.166 1.572(0.8) 1.036(0.7) 0.100
2.0 1.869(0.9) 1.248(0.8) 0.111 1.071(0.6) 0.672(0.5) 0.076
2.5 1.169(0.7) 0.735(0.5) 0.078 0.694(0.5) 0.418(0.3) 0.058
3.0 0.697(0.5) 0.419(0.3) 0.059 0.430(0.4) 0.248(0.2) 0.049
3.5 0.386(0.4) 0.223(0.2) 0.049 0.253(0.3) 0.143(0.2) 0.042
4.0 0.211(0.3) 0.119(0.2) 0.041 0.145(0.2) 0.080(0.1) 0.035
4.5 0.105(0.2) 0.056(0.1) 0.033 0.080(0.2) 0.043(0.1) 0.030
5.0 0.046(0.1) 0.024(0.1) 0.028 0.035(0.1) 0.018(0.1) 0.026

― 18―

8 Masaki FUKUSHIMA and Seiji KATAOKA

✂ ✂
✉ ✈❡

Fig. 7 Ethane graph GE .

of e, and six edges connecting to u and v (Fig-

ure 7). We call this subgraph an ethane graph

GE , because it is similar to the molecular struc-

ture of ethane (C2H6).

In the ethane graph GE , possible edges or de-

grees are strongly restricted in that each code-

word consists of a cycle group. First of all, the

degrees of u and v must be even, so the total num-

ber of edges in GE , denoted |E(GE)|, cannot be 1,
5, or 6. Secondly, for example when |E(GE)| = 2,

the degrees of u and v must be 2–0 or 0–2, and

the center edge e must not be taken. In this case,

the number of edge patterns in GE is limited to

six: those at either side of u and v and the two

non-center edges. Considering BPSK, in which

1 is sent as −1 and 0 is sent as 1, Table 3 sum-

marizes the expected received values of edges in

GE , where R(e) is the expected received value for

center edge e and R(GE) is the total amount of

expected received values for the edges in E(GE).

4.2 Revising direction to reverse added

noise

The ethane graph and possible states in Table 3

are used to appropriately revise received values.

We show the procedure along with an example.

In Figure 8, the number beside each edge is the

received value rj . For an ethane graph of bold

edges, we calculate the total amount of received

value rj (j ∈ E(GE)). In this example, this is

Table 3 Possible states in GE .

|E(GE)| 0 1 2 3 4 5 6 7

deg(u, v) 0-0 — 2-0,0-2 2-2 2-2 — — 4-4

R(e) 1 — 1 −1 1 — — −1

R(GE) 7 — 3 1 −1 — — −7

❡

✵'� ✵'� ✵'�

☎✵✿✾ 6'6

✵'6 ✵'	

Fig. 8 Received values on the ethane

graph of bold edges.

0?✿✶ ✁ ?✿✾ 0 ?✿✼ 0 ✶✿✶

?✵✂ ?✵✄ ?✵☎

?✵✶

✁?✿✾

?✵✼

✶✵✶

✁✶✿✶ ✁✶✿✶

✁✶✿✂ ✁✶✿✂

✁?✿✶ ✁?✿✶

?✵✾

?✵✾ ?✵✾ ?✵✾

?✵☎

?✵☎ ?✵☎ ?✵☎

✶✵✶

✶✵✶ ✶✵✶ ✶✵✶

?✵✆ ?✵✆ ?✵✆

?✵✆ ?✵✆ ?✵✆

✁✶✿✼ ✁✶✿✼

?✵✝ ?✵✝ ?✵✝

?✵✝

✁✄✿✶ ✁✄✿✶✁?✿✶

✁?✿✶ ✁?✿✶ ✁?✿✶

✁✶✿☎ ✁✶✿☎?✵✂

?✵✂ ?✵✂ ?✵✂

✺✞✟ ✸✞✠

✻✞✡ ☛✞✻ ☛✞✠

✠✞✹

❂ ✄✿✄

?✿✂ 0 ?✿✄ 0 ?✿☎

Fig. 9 Possible edge patterns in the

R(GE) = 3 case.

0.4 + 0.2 + 0.6 + 0.1− 0.9 + 0.7 + 1.1 = 2.2. Ac-

cording to Table 3, the nearest total amount of

expected received value R(GE) is 3. From this

information, we estimate an edge pattern in the

ethane graph as described below.

R(GE) = 3 indicates that two edges lie in GE ,

the degrees of vertices are 2–0 or 0–2, and the

center edge is not used. In this case, six edge

patterns are possible (Figure 9). For each possi-

ble edge pattern, we calculate the reversing values

of added noises by AWGN. In the case of an edge

with rj = 0.4, if the edge is taken as part of a

cycle, the reversing value of added noise is −1.4,

or 0.6 if the edge is not taken as part of the cy-

cle. In Figure 9, the number beside each edge

is the reversing value of added noise for the pos-

sible edge patterns. Additionally, the values in

boxes for each edge pattern show sums of abso-

lute values of reversing added noise. In this case,

3.4 is the minimum among the six edge patterns.

Therefore, it is natural to estimate that the edge

Graph-theoretic Code on Grid Graph under Communication with High Noise 9

pattern in the dotted box fits part of the original

codeword through the ethane graph. Let δ1(j)

(j ∈ E(GE)) be the revising direction to reverse

added noise obtained from the bold ethane graph

in Figure 8.

The first procedural step is to calculate the to-

tal amount of received values and to find the near-

est expected received value R(GE) from Table 3.

The second estimating step is executed based on

this information. If the guess in the first step is

wrong, the resultant δ1(j) (j ∈ E(GE)) will also

give the wrong revising direction. However, con-

sidering several ethane graphs will mitigate seri-

ous mistakes. For edge e in Figure 8, the bold-

dotted ethane graph is the second ethane graph,

so δ2(e) is induced as another revising direction.

Observing Figure 8, at most seven ethane graphs

include edge e, and these ethane graphs cover the

solid edges in the figure. Considering information

on the broadly surrounding areas,

∆(e) := δ1(e) + δ2(e) + · · ·+ δ7(e) (6)

can be expected to give a revised direction, and

∆(e) is used to revise the received value re to r′e,

r′e := re + θ∆(e), ∀ e in grid graph. (7)

Through various preliminary experiments, we en-

sured that an appropriate step size θ depends on

the noise strength, that is, SNR. However, the

value of SNR cannot be known in advance, so in-

stead we use the rate of odd-degree vertices in

hard decisions and find an appropriate step size

θ as follows:

θ := 0.21 · (the rate of odd-degree vertices). (8)

4.3 Effect of improving strategy

To see the effects of the improving strategy, we

use the same experimental data as in Section 3.

As the first results, Table 4 shows improvements

over the results shown in Table 2. The left half

of this table is a copy of Table 2, and the right

half shows the results of the improving strategy.

These results clearly demonstrate that the im-

proving strategy is effective. Particularly under

communication with high noise, this strategy re-

duces error to less than half that of both BitE and

PxlE. Furthermore, cpu runtimes are decreased.

As Table 2 shows, decoding by mathematical pro-

gramming performs quickly as added noise is low-

ered. The revised received word is therefore re-

garded as having reduced noise as a welcomed

side-effect.

The second result is Figure 10, which shows the

improvements of Figures 5 and 6. The left half

shows improvement to the binary images in Fig-

ure 5. The left images ((a) and (c)) are copies

of the results of the original mathematical pro-

gramming decoding (Figure 5(d) and (g)), and

the right images ((b) and (d)) are the improved

results. In this case, too, we can see that some-

what larger cycles are eliminated. The right half

shows the result of the raw photo image in Fig-

ure 6, in which we can also see that most large

fragmental noise is eliminated, and characters on

the airplane can be clearly recognized.

5. Concluding remarks

Graph-theoretic code is a classical form of

error-correcting code, but it has generally not

Table 4 Numerical results of the improve-

ment.
Proposed Improved

SNR BitE(sd) PxlE(sd) CPU BitE(sd) PxlE(sd) CPU
0.0 8.711(2.2) 10.248(6.3) 1.030 4.321(1.5) 3.881(3.3) 0.418
0.5 6.260(1.8) 6.042(3.8) 0.532 3.167(1.2) 2.438(1.8) 0.215
1.0 4.383(1.5) 3.649(2.3) 0.277 2.272(1.0) 1.599(1.0) 0.139
1.5 2.896(1.1) 2.116(1.3) 0.166 1.572(0.8) 1.036(0.7) 0.100
2.0 1.869(0.9) 1.248(0.8) 0.111 1.071(0.6) 0.672(0.5) 0.076
2.5 1.169(0.7) 0.735(0.5) 0.078 0.694(0.5) 0.418(0.3) 0.058
3.0 0.697(0.5) 0.419(0.3) 0.059 0.430(0.4) 0.248(0.2) 0.049
3.5 0.386(0.4) 0.223(0.2) 0.049 0.253(0.3) 0.143(0.2) 0.042
4.0 0.211(0.3) 0.119(0.2) 0.041 0.145(0.2) 0.080(0.1) 0.035
4.5 0.105(0.2) 0.056(0.1) 0.033 0.080(0.2) 0.043(0.1) 0.030
5.0 0.046(0.1) 0.024(0.1) 0.028 0.035(0.1) 0.018(0.1) 0.026

― 19―

10 Masaki FUKUSHIMA and Seiji KATAOKA

Fig. 10 Improved results for binary and raw photo images.

been well evaluated. In Section 2, however, we

show that graph-theoretic code using grid graphs

and decoding by mathematical programming

works well, particularly under communication

with high noise. Furthermore, Sections 3 and

4 effectively advance this feature to practical

use. To remove the inferiority, we introduced

ethane graphs, which strongly limit the number

of edges, degrees, and edge patterns. This limita-

tion allows reversal of added noises, eliminating

the inferiority by revising received words.

When received words are sent through space or

in deliberately jammed communications, it might

be impossible to ask the sender to resend mes-

sages or to use longer codewords. In such high-

noise cases, the proposed strategy might be prac-

tically useable method.

References

1) R.K. Ahuja, T.L. Magnanti, and J.B. Orlin,

Network Flows: Theory, Algorithms, and

Applications, Prentice Hall (1993).

2) J. Feldman, M.J. Wainwright and D.

Karger, “Using linear programming to de-

coding binary linear codes,” IEEE Transac-

tion Information Theory, 51 (2005), pp.954-

972.

3) Gurobi Optimizer. http://www.gurobi.com

Accessed 30 August 2022.

4) S.L. Hakimi and J.G. Bredeson, “Graph the-

oretic error-correcting codes,” IEEE Trans-

action Information Theory, IT-14 (1968),

pp.584-591.

5) X.Y. Hu and E. Eleftheriou, “Binary rep-

resentation of cycle Tanner-Graph GF(2b)

codes,” IEEE International Conference on

Communications, 1 (2004), pp.528-532.

6) N. Kashyap, “A decomposition theory for

binary linear codes,” IEEE Transaction on

Information Theory, 54 (2008), pp.3035-

3058.

7) B. Korte and J. Vygen, Combinatorial Opti-

mization: Theory and Algorithms, Springer

(2000).

8) S. Lin and D.J. Costello, Error Control Cod-

ing (2nd ed.), Prentice Hall (2004).

9) D.J.C. MacKay, Encyclopedia of Sparse

Graph Codes,

http://www.inference.phy.cam.ac.uk/mackay/

Accessed 30 August 2022.

10) Standard Image Data-Base,

http://www.ess.ic.kanagawa-it.ac.jp/app

images j.html Accessed 30 August 2022.

11) Y. Takenaka, Liniar Alegibraic Graph The-

ory, Baifuukan (1989). (in Japanese).

(a) MP decoding: # bit error 116, pixel error 67 (b) Improved: # bit error 68, pixel error 36

(c) MP decoding: # bit error 116, pixel error 39 (d) Improved: # bit error 74, pixel error 24

― 20―

