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ture.7) However, our somewhat time-intensive

search could find hardly any absolutely referable

studies that simultaneously consider load distri-

bution. Hence, in Section 2, we introduce two

cadets’ graduation theses that take mathematical

programming approaches. These studies were

not able to fully obtain an optimal squad group-

ing and load distribution for an actual Dan-Kou

race, but they inspired some remarkable ideas for

this paper. One important idea centers around a

new lower bound, which is a major contribution

to this paper and is discussed in Section 3. Using

the proposed lower bound, Section 4 discusses

a branch-and-bound algorithm. In the case of

smaller instances, the algorithm succeeds in

obtaining optimal solutions thousands of times

faster than Gurobi, a cutting-edge solver. For

larger, life-size instances, Section 5 utilizes a

matheuristic approach, which makes use of the

proposed algorithm as an optimizing tool in

neighborhoods. Concluding remarks are made in

Section 6.

2. Past Researches

2.1 Hamamoto’s study

Hamamoto4) presented the following mathe-

matical programming model (Formulation H).

Set and suffix

i ∈ C = {1, 2, . . . , n}: the set of cadets,

j ∈ S = {1, 2, . . . ,m}: the set of squads,

Sj : the set of cadets in squad j, (Sj1 ∩Sj2 =

∅, j1 ̸= j2, |S1|+ |S2|+ · · ·+ |Sm| = n, these

sets are as evenly sized as possible.)

k ∈ M = {0, 1, 2}: the set of modes (0: no

load; 1: normal 9 kg load; 2: twice as heavy

18 kg load). Hamamoto limited the modes

to 0, 1, and 2. Hereinafter, we refer to these

as 0-load, 1-load, and 2-load, respectively.

Given data

tik: the running time of cadet i with k-load.

Formulation H� �

min.
∑
j∈S

Tj , (1)

s.t.
∑
j∈S

∑
k∈M

xijk = 1, ∀i ∈ C, (2)

∑
i∈C

∑
k∈M

xijk = |Sj |, ∀j ∈ S, (3)

∑
i∈C

∑
k∈M

kxijk = |Sj |, ∀j ∈ S, (4)

∑
k∈M

tikxijk ≤ Tj , ∀i ∈ C, j ∈ S, (5)

Tj1 ≤ Tj2 , ∀|Sj1 | = |Sj2 |,
j1 < j2, (6)

xijk ∈ {0, 1}, Tj ≥ 0. (7)

� �

Decision variables

xijk: it takes 1 if cadet i runs in squad j

with k-load, and 0 if otherwise.

Tj : the squad time for squad j.

The constraints (6) are for non-decreasingly or-

dering the squad times with equal size. These

constraints are useful for avoiding wasteful enu-

meration, and afterwards, they play a role in cut-

ting branches in the search tree.

Hamamoto tried to solve Formulation H using

NUOPT, now called “Numetical Optimizer”.8)

He reported that the solver can solve Formu-

lation H for only up to two squads. Based on

this ability, Hamamoto proposed an algorithm

that divides the set of cadets into two, then

recursively divides each half-set into two until

each divided set consists of 8 or 9 cadets.

His algorithm gives solutions where some cadets

carry 0-load and other cadets carry 2-load, even

in the top squad. In an actual Dan-Kou race,

however, the cadets in the top squad usually carry

their own 1-load. Hamamoto himself then con-

cluded that the proposed algorithm failed to re-

flect an actual Dan-Kou situation.

Dan-Kou – A Grouping and Load Distributing Problem – 3

2.2 Kozuka’s study

Solving Formulation H normally results in ob-

taining solutions where each cadet keeps running

from start to the goal with just one discrete

load, either a 0-, 1-, or 2-load. This means that

throughout the race, cadets who run in the front

tend to stay in the front, and likewise cadets

who run in the back tend to stay in the back.

Hence, the distance between those in front and

those in back among squad members gets to be

larger and larger, so in practice it is impossible

to mutually give and receive any loads.

The second thesis, Kozuka,6) considered strate-

gically adjusting loads. The expected solutions

would make it possible to align squad members

throughout the race. The resultant loads would

inform each squad member whether he or she was

on the supporting side or on the supported side,

and the extent of their loads. This knowledge

could be reflected in an actual Dan-Kou race.

Kozuka called Dan-Kou “a min-max grouping

and load distributing problem”6) as a purely

mathematical programming model. So in this

paper, we use the abbreviation “MMGLD” when

considering a purely mathematical programming

model and not an actual Dan-Kou race.

In order to express the partial load distribu-

tion and easily analyze the mathematical model,

Kozuka assumed there to be piecewise linear func-

tions between the [0,1]-load, the [1,2]-load, and

the running time. Additionally, as a natural as-

sumption, the running time for each cadet is ex-

pressed as a monotonically increasing function as

the load increases from 0 to 2. Most of the param-

eters follow Formulation H, but as for the decision

variables, Kozuka distinguishes them between the

[0,1]-load and the [1,2]-load as follows:

xij : it takes 1 if cadet i runs in squad j with

a [0,1]-load and 0 otherwise.

yij : it takes 1 if cadet i runs in squad j with

Formulation K� �

min.
∑
j∈S

Tj , (8)

s.t.
∑
j∈S

(xij + yij) = 1, ∀i, (9)

xij + yij ≤ 1, ∀i, j, (10)∑
i∈C

(xij + yij) = |Sj |, ∀j, (11)

xij − αij − βij = 0, ∀i, j, (12)

yij − γij − δij = 0, ∀i, j, (13)∑
i∈C

(βij + (yij + δij)) = |Sj |, ∀j, (14)

(ti0αij + ti1βij)

+(ti1γij + ti2δij) ≤ Tj ∀i, j, (15)

Tj1 ≤ Tj2 , ∀|Sj1 | = |Sj2 |,
j1 < j2, (16)

xij , yij ∈ {0, 1},
0 ≤ αij , βij , γij , δij ≤ 1. (17)

� �

a [1,2]-load and 0 otherwise.

In Formulatoin K, the constraints (12) and (13)

force the activation of the conditions for convex

combination with parameters αij , βij , γij , and δij .

Kozuka tried to solve MMGLD using Formula-

tion K and Gurobi, but the linearly relaxed lower

bounds were so small that even toy instances

could not be solved practically. For example,

when n = 16, m = 2, and |S1| = |S2| = 8,

the mixed-integer optimal value is 4985.75

(T1 = 2226.71, T2 = 2759.04) but the linearly-

relaxed lower bound is 2759.04 (T1 = 1379.52,

T2 = 1379.52), about half of the optimal value.

Observing each decision variable xij and yij in

linearly-relaxed solutions, they are fragmentary

scattered all over the cadets and squads. Small

xij and yij also make the parameters small by

(12) and (13). Therefore, the left-hand side of

(15) also becomes small. If the number of squads

becomes large, the linearly-relaxed lower bounds

would take hopeless values.
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2.3 Feasible load-distribution

Although Kozuka improved the defects in For-

mulation H, he also could not succeed in solving

the actual Dan-Kou problem or even a small-sized

MMGLD to optimality. However, for a given as-

signment, Kozuka proposed an easy way for ob-

taining the optimal load distribution that does

not depend on mathematical programming.

Figure 1 shows an example; for simplicity, four

cadets, A, B, C, and D, are to be assigned to a

squad j. Given a target time, the dashed line in

the figure, the corresponding loads that are to ar-

rive at the target time are easily calculated from

each piecewise linear and monotonically increas-

ing function. Hence, if we can find the time at

which the total loads become just four, then these

loads will give a feasible, optimal load distribu-

tion. The searched time is exactly the optimal

squad time Tj for squad j. In the exceptional

case where a cadet whose 0-load running time is

later than the searched time—see cadet D and

Tj < tD0 in the figure for example—then Tj is

replaced with tD0.

✵ ✶ ✷

❚❥

❆

❇❈
❉

g'�'

�'�&

Fig. 1 Loads, running times, and squad

time

3. Lower Bound not Depending on Math-

ematical Programming

The proposed upper bound procedure discussed

in Section 2.3 also gives an idea for how to ob-

tain the lower bounds for MMGLD. The proposed

lower bound relaxes the number of cadets in each

squad.

3.1 Fixing/unfixing no cadet to squads

As for the relationship between the load and the

running time for each cadet i, we assume a piece-

wise linear and monotonically increasing function

that passes through (0, ti0), (1, ti1), and (2, ti2),

(ti0 < ti1 < ti2). Hence, considering its inverse

function, for a given time t(ti0 ≤ t ≤ ti2) we can

calculate the load ℓi(t) for cadet i that is needed

in order to arrive at the goal at time t. As excep-

tional cases, if t < ti0, then cadet i cannot arrive

at the goal at time t even with 0-load, so we set

ℓi(t) := 0, and if ti2 < t, cadet i can carry a 2-

load before time t, so we set ℓi(t) := 2. See (18).

ℓi(t) :=




0, t < ti0,

t− ti0
ti1 − ti0

, ti0 ≤ t < ti1,

t− ti1
ti2 − ti1

+ 1, ti1 ≤ t < ti2,

2, ti2 ≤ t.

(18)

In MMGLD, there exist n such functions and

the total amount of load that is carried by all

cadets at time t is expressed as follows:

L(t) :=
∑
i∈C

ℓi(t). (19)

Since each ℓi(t) is a piecewise linear and mono-

tonically increasing function between ti0 and ti2,

and constant for t < ti0 and ti2 < t, then the sum

of these functions L(t) is also a piecewise linear

and monotonically increasing function between

the fastest running time for the 0-load cadets

(mini{ti0}) and the slowest running time for the

Dan-Kou – A Grouping and Load Distributing Problem – 5

Table 1 Gurobi results, LP, and proposed lower bounds: 16;(8)2, ρ = 0.5

Formulation K & Gurobi Proposed LB

seed CPU OptVal (T1, T2) LPLB LB (TL
1 , TL

2 )

111 2.17 4985.75 (2226.71,2759.04) 2759.04 4977.82 (2218.78,2759.04)

222 0.93 4810.42 (2191.94,2618.49) 2618.49 4809.22 (2190.74,2618.48)

333 0.42 4761.47 (2254.67,2506.80) 2506.80 4746.69 (2239.89,2506.80)

444 0.54 4635.45 (2150.09,2485.36) 2404.87 4551.24 (2146.36,2404.87)

555 1.01 4870.49 (2237.60,2632.89) 2632.89 4870.49 (2237.60,2632.89)

Table 2 Gurobi results, LP, and proposed lower bounds: 24;(8)3, ρ = 0.5

Formulation K & Gurobi Proposed LB

seed CPU OptVal (T1, T2, T3) LPLB LB (TL
1 , TL

2 , TL
3 )

111 27.61 7282.27 (2165.69,2313.84,2803.20) 2803.20 7224.50 (2148.08,2273.22,2803.20)

222 15.93 7000.15 (2133.11,2290.58,2576.46) 2569.53 6880.68 (2077.44,2233.71,2569.53)

333 241.29 7253.65 (2235.75,2323.46,2694.44) 2694.45 7174.82 (2186.75,2293.62,2694.44)

444 161.93 6944.11 (2146.60,2295.73,2501.78) 2498.18 6838.90 (2106.44,2234.27,2498.18)

555 16.87 6971.48 (2133.94,2290.72,2546.82) 2498.60 6866.86 (2117.82,2250.43,2498.60)

2-load cadets (maxi{ti2}). The turning points

that shape the piecewise function are tik (i =

1, . . . , n; k = 0, 1, 2). We sort these 3n tik’s in

increasing order and rename them as τp (p =

1, . . . , 3n). If λ is a desired load that we want

to carry, then by searching for an r that satisfies

L(τr−1) ≤ λ < L(τr), (20)

the minimum time for which all cadets can carry

the load λ to the goal is calculated as follows:

λ− L(τr−1)

L(τr)− L(τr−1)
· (τr − τr−1) + τr−1. (21)

If we set λ to |S1|, then (21) gives a lower bound

TL
1 for T1, the squad time for cadets assigned to

squad S1. Since T
L
1 is the squad time for carrying

the |S1|-load by all cadets, it gives a lower bound

for the squad time when only the cadets in S1

carry the same amount of load.

As for S2, by setting λ to |S1| + |S2| and as-

suming that the load is carried by all cadets,

(21) gives a lower bound TL
2 of T2, where cadets

are restricted in S2. Similarly, to obtain a lower

bound TL
j of Tj , we may set λ to |S1| + |S2| +

· · ·+ |Sj |. However, in the case of the last squad

m, if TL
m < maxi{ti0}, considering the influence

of the slowest running time with 0-load, we set

TL
m := maxi{ti0}.
The proposed lower bound is 4977.82

(TL
1 = 2218.78, TL

2 = 2759.04) for the in-

stance previously introduced in Section 2.2.

Additional results for two sizes are shown in

Table 1 and Table 2. As for the notation for

instance size, 16;(8,8) denotes an instance of

n = 16, m = 2, and |S1| = |S2| = 8. When

all squad sizes are equal, we also use 16; (8)2.

The parameter ρ is a correlation coefficient

between ti0 and ti1, and, ti1 and ti2, which we

explain more precisely in Section 4.2. Also,

computational environments are discussed in

Section 4.3.

Seeing even these subtle results, we can expect

to use the proposed lower bounds in the frame-

work for a branch-and-bound method. Hence, it

is necessary to consider revising the lower bound

strategies for the conditions where some cadets

are fixed or unfixed to some squads.

3.2 Fixing/unfixing cadets to squads

The proposed lower bound is chosen so as to

relax the restriction of having a limited number

of cadets carry a given load by having all cadets

― 4―
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222 0.93 4810.42 (2191.94,2618.49) 2618.49 4809.22 (2190.74,2618.48)

333 0.42 4761.47 (2254.67,2506.80) 2506.80 4746.69 (2239.89,2506.80)

444 0.54 4635.45 (2150.09,2485.36) 2404.87 4551.24 (2146.36,2404.87)

555 1.01 4870.49 (2237.60,2632.89) 2632.89 4870.49 (2237.60,2632.89)

Table 2 Gurobi results, LP, and proposed lower bounds: 24;(8)3, ρ = 0.5

Formulation K & Gurobi Proposed LB

seed CPU OptVal (T1, T2, T3) LPLB LB (TL
1 , TL

2 , TL
3 )

111 27.61 7282.27 (2165.69,2313.84,2803.20) 2803.20 7224.50 (2148.08,2273.22,2803.20)

222 15.93 7000.15 (2133.11,2290.58,2576.46) 2569.53 6880.68 (2077.44,2233.71,2569.53)

333 241.29 7253.65 (2235.75,2323.46,2694.44) 2694.45 7174.82 (2186.75,2293.62,2694.44)

444 161.93 6944.11 (2146.60,2295.73,2501.78) 2498.18 6838.90 (2106.44,2234.27,2498.18)

555 16.87 6971.48 (2133.94,2290.72,2546.82) 2498.60 6866.86 (2117.82,2250.43,2498.60)

2-load cadets (maxi{ti2}). The turning points

that shape the piecewise function are tik (i =

1, . . . , n; k = 0, 1, 2). We sort these 3n tik’s in

increasing order and rename them as τp (p =

1, . . . , 3n). If λ is a desired load that we want

to carry, then by searching for an r that satisfies

L(τr−1) ≤ λ < L(τr), (20)

the minimum time for which all cadets can carry

the load λ to the goal is calculated as follows:

λ− L(τr−1)

L(τr)− L(τr−1)
· (τr − τr−1) + τr−1. (21)

If we set λ to |S1|, then (21) gives a lower bound

TL
1 for T1, the squad time for cadets assigned to

squad S1. Since T
L
1 is the squad time for carrying

the |S1|-load by all cadets, it gives a lower bound

for the squad time when only the cadets in S1

carry the same amount of load.

As for S2, by setting λ to |S1| + |S2| and as-

suming that the load is carried by all cadets,

(21) gives a lower bound TL
2 of T2, where cadets

are restricted in S2. Similarly, to obtain a lower

bound TL
j of Tj , we may set λ to |S1| + |S2| +

· · ·+ |Sj |. However, in the case of the last squad

m, if TL
m < maxi{ti0}, considering the influence

of the slowest running time with 0-load, we set

TL
m := maxi{ti0}.
The proposed lower bound is 4977.82

(TL
1 = 2218.78, TL

2 = 2759.04) for the in-

stance previously introduced in Section 2.2.

Additional results for two sizes are shown in

Table 1 and Table 2. As for the notation for

instance size, 16;(8,8) denotes an instance of

n = 16, m = 2, and |S1| = |S2| = 8. When

all squad sizes are equal, we also use 16; (8)2.

The parameter ρ is a correlation coefficient

between ti0 and ti1, and, ti1 and ti2, which we

explain more precisely in Section 4.2. Also,

computational environments are discussed in

Section 4.3.

Seeing even these subtle results, we can expect

to use the proposed lower bounds in the frame-

work for a branch-and-bound method. Hence, it

is necessary to consider revising the lower bound

strategies for the conditions where some cadets

are fixed or unfixed to some squads.

3.2 Fixing/unfixing cadets to squads

The proposed lower bound is chosen so as to

relax the restriction of having a limited number

of cadets carry a given load by having all cadets
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be able to assist in carrying that load. That is,

each cadet is allowed to be involved in several

squads and to carry partial loads between these

squads. Hence, we reconsider the proposed relax-

ation from the viewpoint of load quantity for a

given cadet i for each squad involved.

In Figure 2, let TL
j (j = 1, 2, 3) be the lower

bounds obtained from the proposed procedure in

Section 3.1. Observing cadet i, who has a piece-

wise linear load-time function like that in Fig-

ure 2, we can see that the cadet contributes 0.5-

load to squad 1, 1.1-load to squad 2, and 0.4-

load to squad 3. More precisely, the contribution

to the net load of squad 2 by cadet i at time t

(TL
1 < t ≤ TL

2 ) can be evaluated as ℓi(t)−ℓi(T
L
1 ).

Similarly in the following squads, the contribu-

tion to the net load of squad j by cadet i at

time t is evaluated by subtracting the cumulative

load that has been carried in all previous squads

1, 2, . . . , j−1. Defining TL
0 := 0, we can generally

express the net load quantity for each squad j by

a cadet i at time t as

ℓi(t)− ℓi(T
L
j−1), TL

j−1 < t ≤ TL
j . (22)

Next, we consider the case where some cadets

are fixed and some are unfixed to particular

squads. Figure 3 is an example of this; cadet
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Fig. 3 Net loads when fixing/unfixing

some cadets to squads

i1 is fixed to squad 2 and cadet i2 is unfixed to

squad 2. Obviously, fixing cadet i1 to squad 2

results in unfixing cadet i1 to the other squads.

Since cadet i1 is considered only in the calcu-

lation of the net load at t for squad 2, the con-

tribution of cadet i1 to squad 2 is fully evalu-

ated as ℓi1(t)(T
L
1 < t ≤ TL

2 ) without subtract-

ing the cumulative load from previous squads.

On the other hand, since cadet i2 does not con-

tribute to squad 2 but to squad 1, the net load

for squad 3 should be ℓi2(t) − ℓi2(T
L
1 )(T

L
2 < t ≤

TL
3 ). Additionally, the net load for squad 4 should

be ℓi2(t) − ℓi2(T
L
3 )(T

L
3 < t ≤ TL

4 ). Therefore,

whether cadet i is fixed or unfixed to squad j,

the contribution to the net load of squad j can

be evaluated by subtracting the cumulative load

in previous squads.

Lastly, consider the case where cadet i is fixed

to squad j1 but does not contribute any load to

it. Such a case occurs when ti0 > TL
j1
. Then

the relaxed squad time is set to TL
j1

:= ti0. As

a result, if |Sj1 | = |Sj2 |(j1 < j2) and the relaxed

squad time TL
j2
becomes smaller than TL

j1
, then we

can consider the branch-and-bound search tree

to be wasteful fixing because of the assumption

TL
j1

≤ TL
j2
(|Sj1 | = |Sj2|, j1 < j2) from (6) or (16).
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4. Branch-and-Bound Algorithm

4.1 Upper bounds and the branching rule

As an initial feasible solution, we sort cadets

along the 1-load running time ti1(i ∈ C), assign

the first |S1| cadets to squad 1, and sequentially

assign the following |Sj | cadets to squad j (j =

2, . . . ,m).

Another important matter in developing a

branch-and-bound algorithm is the branching

rule. Our branching rule depends on the rule

normally used in the multiple knapsack prob-

lem.5) Here, cadet i is assigned sequentially to

squad 1, squad 2, . . ., squad m, and as a result

the search tree forms an m-nary tree. The cadets

are numbered along the 0-load running time,

so better solutions are expected to appear at

a relatively early stage. Afterwards, if cadets

with a fast running time are assigned to squad

2 or latter squads, then the lower bound of

squad 1, that is, TL
1 , is likely to increase, so

it can be expected that the search tree will be

cut. On the other hand, if cadets with a slow

running time are assigned to former squads, then

their running times influence the squad times

for the squads and may break the constraints

TL
j1

≤ TL
j2
(|Sj1 | = |Sj2 |, j1 < j2). For this too we

may also be expected to cut the search tree.

4.2 Generating instances

This study was inspired by Dan-Kou, a com-

petitive sport held at our academy. All of the

data we have are only a single set that consists

of 101 cadets and is lacking in many ways, par-

ticularly in the data for the 2-load running times.

In order to evaluate the proposed algorithm, it

is necessary to generate trial data based on vari-

ables such as estimated mean and variance. As

an additional consideration, about 10 % of cadets

are women.

First, we assume that each ti0, ti1, and ti2 fol-

lows a normal distribution N(µ, σ2) among men

and women, where µ is the mean and σ2 is the

variance. We give the distributions of the run-

ning times in Table 3, estimated from the real

data set.

Secondly, we consider introducing correlation.

It may be natural to assume that a person who is

able to run fast can also run fast even when the

person is carrying a load. On the other hand, a

fast but lightweight vehicle often worsens its per-

formance when it loads heavy weight while a slow

but heavy vehicle is not affected by it. Accord-

ingly, in our computational experiences, we also

introduce some negative correlation when evalu-

ating our algorithm for a mathematical model,

namely, MMGLD.

It is known that two normal distributions X

and Y along N(0.0, 1.02) having the correlation

coefficient ρ can be generated by using another

normal distribution Z along N(0.0, 1.02) using

Y = ρX +
√
1− ρ2Z. (23)

Hence, by using the normal distributions X, Z0,

and Z2 along N(0.0, 1.02), for the case of men,

we set ti1 as 200X + 2300, ti0 as 200Y0 + 2200,

and ti2 as 300Y2 + 2500 and make them satisfy

ti0 < ti1 < ti2.

4.3 Computational experiments

The computational experiments were per-

formed on a personal computer with a 3.3 GHz

Intel Core i7-5820K CPU running the Cen-

tOS 6.8 operating system. The primary purpose

of the experiments in this section is to gauge the

ability of the branch-and-bound algorithm. As

stated by Hamamoto and Kozuka the number of

Table 3 Distributions of running times for

load and gender

Men(90%) Women(10%)

0-load: ti0 N(2200, 2002) N(2500, 2002)

1-load: ti1 N(2300, 2002) N(2700, 2002)

2-load: ti2 N(2500, 3002) N(3100, 3002)
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be able to assist in carrying that load. That is,

each cadet is allowed to be involved in several

squads and to carry partial loads between these

squads. Hence, we reconsider the proposed relax-

ation from the viewpoint of load quantity for a

given cadet i for each squad involved.

In Figure 2, let TL
j (j = 1, 2, 3) be the lower

bounds obtained from the proposed procedure in

Section 3.1. Observing cadet i, who has a piece-

wise linear load-time function like that in Fig-

ure 2, we can see that the cadet contributes 0.5-

load to squad 1, 1.1-load to squad 2, and 0.4-

load to squad 3. More precisely, the contribution

to the net load of squad 2 by cadet i at time t

(TL
1 < t ≤ TL

2 ) can be evaluated as ℓi(t)−ℓi(T
L
1 ).

Similarly in the following squads, the contribu-

tion to the net load of squad j by cadet i at

time t is evaluated by subtracting the cumulative

load that has been carried in all previous squads

1, 2, . . . , j−1. Defining TL
0 := 0, we can generally

express the net load quantity for each squad j by

a cadet i at time t as

ℓi(t)− ℓi(T
L
j−1), TL

j−1 < t ≤ TL
j . (22)

Next, we consider the case where some cadets

are fixed and some are unfixed to particular

squads. Figure 3 is an example of this; cadet
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Fig. 3 Net loads when fixing/unfixing

some cadets to squads

i1 is fixed to squad 2 and cadet i2 is unfixed to

squad 2. Obviously, fixing cadet i1 to squad 2

results in unfixing cadet i1 to the other squads.

Since cadet i1 is considered only in the calcu-

lation of the net load at t for squad 2, the con-

tribution of cadet i1 to squad 2 is fully evalu-

ated as ℓi1(t)(T
L
1 < t ≤ TL

2 ) without subtract-

ing the cumulative load from previous squads.

On the other hand, since cadet i2 does not con-

tribute to squad 2 but to squad 1, the net load

for squad 3 should be ℓi2(t) − ℓi2(T
L
1 )(T

L
2 < t ≤

TL
3 ). Additionally, the net load for squad 4 should

be ℓi2(t) − ℓi2(T
L
3 )(T

L
3 < t ≤ TL

4 ). Therefore,

whether cadet i is fixed or unfixed to squad j,

the contribution to the net load of squad j can

be evaluated by subtracting the cumulative load

in previous squads.

Lastly, consider the case where cadet i is fixed

to squad j1 but does not contribute any load to

it. Such a case occurs when ti0 > TL
j1
. Then

the relaxed squad time is set to TL
j1

:= ti0. As

a result, if |Sj1 | = |Sj2 |(j1 < j2) and the relaxed

squad time TL
j2
becomes smaller than TL

j1
, then we

can consider the branch-and-bound search tree

to be wasteful fixing because of the assumption

TL
j1

≤ TL
j2
(|Sj1 | = |Sj2|, j1 < j2) from (6) or (16).
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4. Branch-and-Bound Algorithm

4.1 Upper bounds and the branching rule

As an initial feasible solution, we sort cadets

along the 1-load running time ti1(i ∈ C), assign

the first |S1| cadets to squad 1, and sequentially

assign the following |Sj | cadets to squad j (j =

2, . . . ,m).

Another important matter in developing a

branch-and-bound algorithm is the branching

rule. Our branching rule depends on the rule

normally used in the multiple knapsack prob-

lem.5) Here, cadet i is assigned sequentially to

squad 1, squad 2, . . ., squad m, and as a result

the search tree forms an m-nary tree. The cadets

are numbered along the 0-load running time,

so better solutions are expected to appear at

a relatively early stage. Afterwards, if cadets

with a fast running time are assigned to squad

2 or latter squads, then the lower bound of

squad 1, that is, TL
1 , is likely to increase, so

it can be expected that the search tree will be

cut. On the other hand, if cadets with a slow

running time are assigned to former squads, then

their running times influence the squad times

for the squads and may break the constraints

TL
j1

≤ TL
j2
(|Sj1 | = |Sj2 |, j1 < j2). For this too we

may also be expected to cut the search tree.

4.2 Generating instances

This study was inspired by Dan-Kou, a com-

petitive sport held at our academy. All of the

data we have are only a single set that consists

of 101 cadets and is lacking in many ways, par-

ticularly in the data for the 2-load running times.

In order to evaluate the proposed algorithm, it

is necessary to generate trial data based on vari-

ables such as estimated mean and variance. As

an additional consideration, about 10 % of cadets

are women.

First, we assume that each ti0, ti1, and ti2 fol-

lows a normal distribution N(µ, σ2) among men

and women, where µ is the mean and σ2 is the

variance. We give the distributions of the run-

ning times in Table 3, estimated from the real

data set.

Secondly, we consider introducing correlation.

It may be natural to assume that a person who is

able to run fast can also run fast even when the

person is carrying a load. On the other hand, a

fast but lightweight vehicle often worsens its per-

formance when it loads heavy weight while a slow

but heavy vehicle is not affected by it. Accord-

ingly, in our computational experiences, we also

introduce some negative correlation when evalu-

ating our algorithm for a mathematical model,

namely, MMGLD.

It is known that two normal distributions X

and Y along N(0.0, 1.02) having the correlation

coefficient ρ can be generated by using another

normal distribution Z along N(0.0, 1.02) using

Y = ρX +
√
1− ρ2Z. (23)

Hence, by using the normal distributions X, Z0,

and Z2 along N(0.0, 1.02), for the case of men,

we set ti1 as 200X + 2300, ti0 as 200Y0 + 2200,

and ti2 as 300Y2 + 2500 and make them satisfy

ti0 < ti1 < ti2.

4.3 Computational experiments

The computational experiments were per-

formed on a personal computer with a 3.3 GHz

Intel Core i7-5820K CPU running the Cen-

tOS 6.8 operating system. The primary purpose

of the experiments in this section is to gauge the

ability of the branch-and-bound algorithm. As

stated by Hamamoto and Kozuka the number of

Table 3 Distributions of running times for

load and gender

Men(90%) Women(10%)

0-load: ti0 N(2200, 2002) N(2500, 2002)

1-load: ti1 N(2300, 2002) N(2700, 2002)

2-load: ti2 N(2500, 3002) N(3100, 3002)
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Table 4 Results for the proposed branch-and-bound algorithm

instance type correlation coefficient ρ

n; ( n
m
)m −0.6 −0.3 0.0 0.3 0.6 0.9

3.3354 2.0603 1.7654 1.6411 1.4300 1.1420

16;(8)2 0.0050 0.0035 0.0022 0.0013 0.0007 0.0007

(167) (59) (802) (1262) (2043) (1631)

22.5240 20.2723 16.7761 14.6891 12.0873 8.9068

20;(10)2 0.0456 0.0242 0.0125 0.0052 0.0026 0.0017

(494) (838) (1342) (2825) (4649) (5239)

185.3960 152.9805 134.1564 107.9700 77.2425 42.0382

24;(12)2 0.2077 0.1069 0.0338 0.0208 0.0066 0.0086

(893) (1431) (3969) (5191) (11703) (4888)
11)2686.9762 11)2737.3445 2)1252.7871 6)1481.9765 4)960.6046 1)388.9298

28;(14)2 1.4065 0.4464 0.1692 0.0306 0.0146 0.0390

(1019) (6132) (7404) (48431) (65795) (9972)

0.8994 0.9115 0.7636 0.6299 0.4788 0.3571

12;(4)3 0.0075 0.0067 0.0050 0.0039 0.0029 0.0029

(119) (136) (153) (162) (165) (123)

169.3254 114.4436 57.9433 30.1712 10.4648 3.0221

18;(6)3 1.0183 0.6161 0.2813 0.1629 0.0873 0.0911

(166) (186) (206) (185) (120) (33)
6)1427.2486 7)1389.5969 4)1069.0050 1.9)752.0816 0.4)250.1126 36.7846

24;(8)3 55.6485 31.6295 8.1460 6.0882 2.3840 2.7931

(26) (44) (131) (124) (105) (13)

4.0563 4.1001 3.1175 2.5065 1.7615 1.1992

12;(3)4 0.0499 0.0397 0.0286 0.0218 0.0172 0.0189

(81) (103) (109) (115) (102) (63)

212.8648 0.1)207.1138 153.5388 80.6396 39.1376 15.4401

16;(4)4 2.0730 1.4722 0.9161 0.5679 0.3144 0.4099

(103) (141) (168) (142) (124) (38)

squads seems to be the crucial parameter for the

algorithm. So in Table 4, the first four types are

for two-squad models, the next three types are

for three-squad models, and the last two types

are for four-squad models. Each squad size is set

to be equal. The results for each pair of instance

type and correlation coefficient consist of three

values. The upper value is the CPU time for

Formulation K and Gurobi 9.1,3) the middle

value is that for the proposed branch-and-bound

algorithm, and the last value in parentheses is

the quotient of the two CPU times. Most values

in the table are the average of 1000 trials, but

values in italic font represent the average of 100

trials as a result of heavy computational burden.

Leading superscript values — 0.1)207.1138 for

example—show that 0.1 percent of instances ex-

ceed the time limit of 10000 sec. The calculation

of the average CPU time includes these instances

as 10000 sec, so the true average time will be

larger than 207.1138.

As a whole, the proposed branch-and-bound al-

gorithm solves MMGLD much faster, sometimes

thousands of times faster, than using Formula-

tion K and Gurobi. As for the instance type,

a subtle increasing of the number of cadets n or

the number of squadsm affects the computational

burden. This observation indicates the necessity

of another heuristic algorithm for solving larger

and more realistic Dan-Kou size instances, which
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we discuss in the next section. As for the correla-

tion coefficient, instances with higher correlation

are easier to solve. This would be preferable be-

cause real Dan-Kou data are expected to have a

higher correlation coefficient.

5. Large, Realistic Size Instances

5.1 Matheuristic

The proposed branch-and-bound algorithm

succeeds in solving MMGLD more effectively

than Formulation K and Gurobi, but in practice

its solvable sizes are too small to apply the

algorithm to larger, more realistic Dan-Kou

size instances. Thus, we consider applying the

matheuristic strategy.1,2) The idea behind the

matheuristic approach appeared around 2010; it

is an expansion of a type of local search. The idea

is about taking a somewhat larger neighborhood

and searching for an optimal solution by using

a mathematical programming solver, such as

Gurobi. This idea depends on the development

of high computational performance and on

the development of cutting-edge mathematical

programming solvers.

5.2 Selecting optimizing tools

In MMGLD, exchanging only a few cadets

would not be expected to deeply improve the fea-

sible solutions. In introducing the matheuristic

algorithm, we take a few squads and within them

solve MMGLD to optimality using the proposed

branch-and-bound algorithm.

First, we consider the selection of optimizing

tools that are to be used in our matheuristic al-

gorithm. Keeping in mind actual Dan-Kou condi-

tions, we try to solve for 96 cadets and 12 squads,

that is, a total of 96;(8)12 instances. In order to

decide which optimizing tools or neighborhood

to use, we observe the performances for solving

MMGLD with a multiple of 8 cadets in a squad.

For the correlation coefficient, the value for the

Table 5 Results for a multiple of 8 cadets

in squad instances

16;(8)2 32;(16)2 48;(24)2 64;(32)2 24;(8)3

0.0007 0.0685 9.8886 5)1057.7342 2.7931

actual Dan-Kou scenario is assumed to be 0.85–

0.92, so we set ρ := 0.9. Table 5 shows the com-

putational results for these instances given by the

proposed branch-and-bound algorithm. Values

are the average CPU time from 1000 trials.

Limiting the average CPU time to 1.0 sec

or less, we can take up 16;(8)2 or 32;(16)2

instances. But the performance of 32;(16)2 is

about 100 times slower than 16;(8)2. Hence,

for the matheuristic approach, we decide to

repeatedly use only 16;(8)2.

5.3 Strategy and resuls

The proposed matheuristic algorithm involves

choosing two squads randomly from the current

feasible solution and solving the induced 16;(8)2

MMGLD to optimality without considering the

other 10 squads. It would be possible to iterate

the above procedure 120–150 times per second.

The algorithm is similar to what we call ‘2-opt’.

Figure 4 shows the improving process for an in-

stance. The bold line shows the result of Formu-

lation K and Gurobi, which gradually improves

incumbent solutions over 3600 sec. On the other

hand, the ten horizontal lines, the differences of

which depend on random seeds, show the results

of the proposed matheuristic algorithm. Note

that, strictly speaking, these are not simply hor-

izontal lines. The proposed matheuristic algo-

rithm attains these stable values within the first

few seconds. Figure 5 shows an expansion of the

first 10 sec of Figure 4. The bold horizontal line

is the final value of Formulation K and Gurobi

after a 3600-sec runtime. As shown Figure 4 and

Figure 5, we find that some results (dotted lines)

lie in local optimal solutions that are larger than
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Table 4 Results for the proposed branch-and-bound algorithm

instance type correlation coefficient ρ

n; ( n
m
)m −0.6 −0.3 0.0 0.3 0.6 0.9

3.3354 2.0603 1.7654 1.6411 1.4300 1.1420

16;(8)2 0.0050 0.0035 0.0022 0.0013 0.0007 0.0007

(167) (59) (802) (1262) (2043) (1631)

22.5240 20.2723 16.7761 14.6891 12.0873 8.9068

20;(10)2 0.0456 0.0242 0.0125 0.0052 0.0026 0.0017

(494) (838) (1342) (2825) (4649) (5239)

185.3960 152.9805 134.1564 107.9700 77.2425 42.0382

24;(12)2 0.2077 0.1069 0.0338 0.0208 0.0066 0.0086

(893) (1431) (3969) (5191) (11703) (4888)
11)2686.9762 11)2737.3445 2)1252.7871 6)1481.9765 4)960.6046 1)388.9298

28;(14)2 1.4065 0.4464 0.1692 0.0306 0.0146 0.0390

(1019) (6132) (7404) (48431) (65795) (9972)

0.8994 0.9115 0.7636 0.6299 0.4788 0.3571

12;(4)3 0.0075 0.0067 0.0050 0.0039 0.0029 0.0029

(119) (136) (153) (162) (165) (123)

169.3254 114.4436 57.9433 30.1712 10.4648 3.0221

18;(6)3 1.0183 0.6161 0.2813 0.1629 0.0873 0.0911

(166) (186) (206) (185) (120) (33)
6)1427.2486 7)1389.5969 4)1069.0050 1.9)752.0816 0.4)250.1126 36.7846

24;(8)3 55.6485 31.6295 8.1460 6.0882 2.3840 2.7931

(26) (44) (131) (124) (105) (13)

4.0563 4.1001 3.1175 2.5065 1.7615 1.1992

12;(3)4 0.0499 0.0397 0.0286 0.0218 0.0172 0.0189

(81) (103) (109) (115) (102) (63)

212.8648 0.1)207.1138 153.5388 80.6396 39.1376 15.4401

16;(4)4 2.0730 1.4722 0.9161 0.5679 0.3144 0.4099

(103) (141) (168) (142) (124) (38)

squads seems to be the crucial parameter for the

algorithm. So in Table 4, the first four types are

for two-squad models, the next three types are

for three-squad models, and the last two types

are for four-squad models. Each squad size is set

to be equal. The results for each pair of instance

type and correlation coefficient consist of three

values. The upper value is the CPU time for

Formulation K and Gurobi 9.1,3) the middle

value is that for the proposed branch-and-bound

algorithm, and the last value in parentheses is

the quotient of the two CPU times. Most values

in the table are the average of 1000 trials, but

values in italic font represent the average of 100

trials as a result of heavy computational burden.

Leading superscript values — 0.1)207.1138 for

example—show that 0.1 percent of instances ex-

ceed the time limit of 10000 sec. The calculation

of the average CPU time includes these instances

as 10000 sec, so the true average time will be

larger than 207.1138.

As a whole, the proposed branch-and-bound al-

gorithm solves MMGLD much faster, sometimes

thousands of times faster, than using Formula-

tion K and Gurobi. As for the instance type,

a subtle increasing of the number of cadets n or

the number of squadsm affects the computational

burden. This observation indicates the necessity

of another heuristic algorithm for solving larger

and more realistic Dan-Kou size instances, which

Dan-Kou – A Grouping and Load Distributing Problem – 9

we discuss in the next section. As for the correla-

tion coefficient, instances with higher correlation

are easier to solve. This would be preferable be-

cause real Dan-Kou data are expected to have a

higher correlation coefficient.

5. Large, Realistic Size Instances

5.1 Matheuristic

The proposed branch-and-bound algorithm

succeeds in solving MMGLD more effectively

than Formulation K and Gurobi, but in practice

its solvable sizes are too small to apply the

algorithm to larger, more realistic Dan-Kou

size instances. Thus, we consider applying the

matheuristic strategy.1,2) The idea behind the

matheuristic approach appeared around 2010; it

is an expansion of a type of local search. The idea

is about taking a somewhat larger neighborhood

and searching for an optimal solution by using

a mathematical programming solver, such as

Gurobi. This idea depends on the development

of high computational performance and on

the development of cutting-edge mathematical

programming solvers.

5.2 Selecting optimizing tools

In MMGLD, exchanging only a few cadets

would not be expected to deeply improve the fea-

sible solutions. In introducing the matheuristic

algorithm, we take a few squads and within them

solve MMGLD to optimality using the proposed

branch-and-bound algorithm.

First, we consider the selection of optimizing

tools that are to be used in our matheuristic al-

gorithm. Keeping in mind actual Dan-Kou condi-

tions, we try to solve for 96 cadets and 12 squads,

that is, a total of 96;(8)12 instances. In order to

decide which optimizing tools or neighborhood

to use, we observe the performances for solving

MMGLD with a multiple of 8 cadets in a squad.

For the correlation coefficient, the value for the

Table 5 Results for a multiple of 8 cadets

in squad instances

16;(8)2 32;(16)2 48;(24)2 64;(32)2 24;(8)3

0.0007 0.0685 9.8886 5)1057.7342 2.7931

actual Dan-Kou scenario is assumed to be 0.85–

0.92, so we set ρ := 0.9. Table 5 shows the com-

putational results for these instances given by the

proposed branch-and-bound algorithm. Values

are the average CPU time from 1000 trials.

Limiting the average CPU time to 1.0 sec

or less, we can take up 16;(8)2 or 32;(16)2

instances. But the performance of 32;(16)2 is

about 100 times slower than 16;(8)2. Hence,

for the matheuristic approach, we decide to

repeatedly use only 16;(8)2.

5.3 Strategy and resuls

The proposed matheuristic algorithm involves

choosing two squads randomly from the current

feasible solution and solving the induced 16;(8)2

MMGLD to optimality without considering the

other 10 squads. It would be possible to iterate

the above procedure 120–150 times per second.

The algorithm is similar to what we call ‘2-opt’.

Figure 4 shows the improving process for an in-

stance. The bold line shows the result of Formu-

lation K and Gurobi, which gradually improves

incumbent solutions over 3600 sec. On the other

hand, the ten horizontal lines, the differences of

which depend on random seeds, show the results

of the proposed matheuristic algorithm. Note

that, strictly speaking, these are not simply hor-

izontal lines. The proposed matheuristic algo-

rithm attains these stable values within the first

few seconds. Figure 5 shows an expansion of the

first 10 sec of Figure 4. The bold horizontal line

is the final value of Formulation K and Gurobi

after a 3600-sec runtime. As shown Figure 4 and

Figure 5, we find that some results (dotted lines)

lie in local optimal solutions that are larger than
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Fig. 4 Improving processes from 0 to 3600

sec for an instance

Fig. 5 Improving processes from 0 to 10

sec for an instance

the final result from Formulation K and Gurobi,

but it takes 1800 or 3300 sec for Gurobi to catch

up with these two inferior results.

Finally, Figure 6 shows the average behavior

of 10 trials of 96;(8)12 instances. The horizon-

tal line shows the average value obtained after a

3600-sec runtime of Gurobi and is set to 1.00 as

a standard. According to the standard, the re-

sults of the matheuristic algorithm are shown as

relative values. The upper line is the average of

the 10 worst cases among the 10 different ran-

dom seeds, and the lower line is that of the 10

best cases. The middle line is the average of all

10 instances and all 10 random seeds. The pro-

posed matheuristic algorithm performs so quickly

that the multi-start strategy will be expected to

resolve large MMGLD instances, such as for 96

cadets and 12 squads, or actual Dan-Kou races.

Fig. 6 Average behavior of 10 trials

6. Concluding remarks

This study was inspired by the competitive

sport Dan-Kou. Based on two cadets’ studies,

we proposed a new lower bounding strategy.

By applying the proposed lower bounds, the

developed branch-and-bound algorithm succeeds

in solving small mathematical models thousands

of times faster than using Gurobi. In order to

solve larger or real-life Dan-Kou size instances,

we apply the matheuristic idea. The proposed

matheuristic outperforms previous best values

by a few seconds.
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